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EXECUTIVE SUMMARY

The Traffic Alert and Collision Avoidance System (TCAS) is a widely-deployed
safety system for reducing the risk of mid-air collision between aircraft. TCAS II
provides advisories to pilots on how to resolve potential conflicts. The threat res-
olution logic of TCAS II is the product of several decades of research by many
organizations. The logic was tested in simulation on a large collection of encounter
scenarios generated by models derived from operational data. The system was eval-
uated using various performance metrics, including collision risk and false alert rate.
The development cycle involved analyzing problematic encounters and adapting the
logic manually, which was then re-evaluated in simulation.

As the airspace evolves with the introduction of new air traffic control pro-
cedures and surveillance systems, it is likely that the TCAS II threat detection
and resolution logic will require modification to meet safety and operational re-
quirements. Due to the complexity of the logic, modifying the logic may require
significant engineering effort. This report suggests a new approach to TCAS logic
development where the engineering effort is focused on developing models, allow-
ing computers to optimize the logic according to agreed-upon performance metrics.
Because models of sensor characteristics, pilot response behavior, and aircraft dy-
namics can be constructed from operational data, they should be straightforward to
justify and vet within the safety community. The optimization of the logic according
to these models would be done using principled techniques that are well established
in theory and practice over the past 50 years.

The objective of this report is not to develop a particular conflict resolution
algorithm, but to connect this concept of TCAS logic optimization to the exist-
ing literature on model-based optimization. Problems involving sequential decision
making in a dynamic environment are typically modeled by a Markov decision pro-
cess, where the state at the next decision point depends probabilistically on the
current state and the chosen action. Assuming some objective measure of cost, the
best action from the current state is the one that minimizes the expected future
cost. Dynamic programming can be used to solve for the optimal action from all
possible states.

To illustrate some of the key concepts of how dynamic programming might
be applied to TCAS logic optimization, this report uses a simple encounter model
and evaluates the resulting logic in simulation using various performance metrics.
This report identifies some of the issues with applying a dynamic programming
approach. One issue is the scalability of existing solution methods to higher dimen-
sions. Adding additional dimensions results in an exponential increase in memory
and computational requirements, but several techniques suggested in this report
address this issue.
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This report discusses alternatives to dynamic programming. One approach
that has been explored by others involves using conflict probability estimates to
decide when to issue resolution advisories. Although this approach will not result in
the optimal solution, it may approximate the optimal logic well. This report also dis-
cusses the strengths and weaknesses of other approaches, such as rapidly-expanding
random trees, potential field methods, policy search, and geometric optimization.
One of the primary strengths of the dynamic programming approach over these other
methods is that it directly leverages models of sensor error and aircraft behavior to
find the optimal logic.

Although this report focuses primarily on the computational aspect of opti-
mizing collision avoidance logic, there are other issues that require further study.
In particular, since this is a new approach to TCAS logic development, the certifi-
ability of the resulting logic is of particular concern. If this new approach is to be
used simply as an aid to engineers who are developing or revising collision avoidance
pseudocode, then there would be little impact on the certification process. However,
if the logic produced by dynamic programming or some other automated process is
to be used directly in a future version of TCAS, then the certification process may
be somewhat different. The core of the certification process will be the same, in-
volving rigorous simulation studies and flight tests to prove safety and demonstrate
operational acceptability. However, the vetting of the logic itself will involve more
than just studying the logic that will be deployed on the system. Depending on the
representation of the logic, it may not be directly comprehensible by an engineer.
Therefore, confidence would need to be established in the safety community that
the methods used to generate the logic are sound. This report represents a first step
in justifying an automated approach for generating optimized TCAS logic.
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1. INTRODUCTION

The Traffic Alert and Collision Avoidance System (TCAS) is designed to reduce the rate of
mid-air collisions between aircraft. TCAS I, intended primarily for general aviation aircraft, pro-
vides traffic advisories (TAs) to pilots. In addition to TAs, TCAS II provides resolution advisories
(RAs) that instruct pilots on how to resolve potentially hazardous situations. The threat resolution
logic of TCAS II has been shown to significantly reduce the risk of collision when other safety layers,
such as air traffic control services, have failed to maintain safe separation between aircraft [1–4].
TCAS II is currently mandated worldwide on board all large transport aircraft.

The threat declaration and resolution logic in the current version of TCAS is the product of
several decades of research by different organizations. During the development of TCAS, the logic
was tested in simulation on a large collection of encounter scenarios. The encounters were generated
randomly from models derived from operational data. The performance of TCAS was evaluated
using various performance metrics, including collision risk and false alarm rate. The development
cycle involved analyzing problematic encounters and adapting the logic manually, which was then
re-evaluated in simulation.

Due to the complexity of TCAS, modifying the logic to correct issues identified in simu-
lation can be difficult. For example, recent efforts to correct an issue with the critical interval
portion of the logic were complicated due to unanticipated ripples in other parts of the logic.
Next-generation air traffic control procedures and new sensor systems like Automatic Dependent
Surveillance-Broadcast (ADS-B) will likely require re-engineering much of the system and tuning
many parameters embedded in the logic.

This report investigates a decision-theoretic approach to developing collision avoidance logic
that directly leverages encounter models to optimize threat-resolution behavior. In this framework,
the optimal resolution advisory is the one that provides the best expected outcome, balancing the
competing objectives of minimizing unnecessary alerts and collisions. The engineering effort is
focused on building models instead of designing complex logic.

Since the development of TCAS, there have been significant technological and algorithmic
advances that may make an automated logic optimization approach practical. The theory of optimal
decision making under uncertainty has been applied to a wide variety of problems, from robotic
control to medical diagnosis. Leveraging these advances in theory and practice has the potential
of shortening the TCAS development cycle, reducing unnecessary alerts, and making the system
more robust to unexpected events. As the airspace and sensor capabilities evolve, the system can
be re-optimized based on updated models with relatively little engineering effort.

1.1 OBJECTIVES

The objectives of this report are as follows:

1. Provide motivation: A model-based optimization approach to collision avoidance is a
significant departure from how the TCAS logic has been developed in the past. This report
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will identify the strengths and challenges associated with such an approach and discuss why
consideration of a new approach may be worthwhile. (Section 2)

2. Connect problem to existing literature: A large body of literature exists on optimal
decision making under uncertainty, and there has been substantial progress made in both
theory and practice in recent years that has not been fully leveraged by the TCAS development
community. This report will connect the problem of collision avoidance to the key concepts,
models, and solution methods developed in the field. (Section 3)

3. Demonstrate concepts on simple model: Because of the complexity of a realistic model of
the airborne collision avoidance problem, this report focuses on a simplified model (described
later in this section) that has many of the important attributes of the real problem but can
be discussed more easily. This simplified model will be used to demonstrate the key concepts
of the approach. (Section 3)

4. Discuss performance metrics: Many of the performance metrics used to evaluate previous
versions of TCAS can be applied to measure the performance of a system developed using the
proposed approach. This report will compare the performance of the new approach against
the existing logic using several different metrics. (Section 5)

5. Compare with alternative approaches: A wide variety of other approaches to airborne
collision avoidance have been suggested in the literature. This report will briefly survey some
of the most significant methods and relate them to the proposed decision-theoretic approach.
(Sections 4 and 6)

6. Identify issues for further research: Further research will be required to scale the simple
model and solution methods to a working prototype system. This report will focus largely on
the computational issues but will also discuss other issues related to certification. (Section 7)

The scope of this report includes only the threat-resolution behavior of TCAS II. This report
will only discuss the conditions for issuing resolution advisories, not the conditions for issuing traffic
advisories. The approach suggested in this report can accommodate different surveillance systems,
including Mode S and ADS-B, but the discussion in most of this report does not depend upon the
specifics of the surveillance system.

This report does not advocate any specific collision avoidance logic—only an approach that
can lead to the development of new logic or suggestions for improving existing logic. The develop-
ment of a new logic will require the participation and consensus of many different organizations, and
the certification process will involve rigorous simulation studies and flight tests as done historically
with previous versions of TCAS.

The remainder of this section provides a short introduction to the existing TCAS logic and
describes the hypothetical collision avoidance problem used to demonstrate the approach suggested
in this report. Throughout this report, the aircraft equipped with TCAS is called own aircraft,
while a potentially hazardous nearby aircraft, which is not necessarily equipped with TCAS, is
called the intruder.
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1.2 TCAS LOGIC

TCAS decides to issue RAs based upon range and altitude separation criteria. If it is projected that
range separation with an intruder might be lost within a threshold time and that there might not
be at least a minimum altitude separation during the time interval when range separation might
be lost, an RA will be triggered. The timing of an RA depends on the values of various parameters
used in the resolution logic. The values of these parameters, in turn, depend on the altitude layer
of own aircraft and the so-called sensitivity level. Higher sensitivity levels generally result in earlier
RAs. When the sensitivity level is set to two, its lowest value, the generation of RAs is inhibited.
During normal operation, the sensitivity level is most often determined automatically based on the
altitude of own aircraft.

TCAS issues either upward or downward sense RAs. The Climb and Descend RAs advise
the pilot to climb or descend at least 1500 ft/min, respectively. These RAs are called positive
RAs because they require positive action on the part of the pilot in order to resolve the conflict.
They generally require the most aggressive maneuvers from the pilot. Other positive RAs include
Crossing Climb, when own aircraft is projected to cross altitudes with the intruder while climbing,
and Maintain Climb, when own aircraft is already climbing at least 1500 ft/min. In addition to these,
TCAS also issues RAs that correspond to vertical speed limits (VSLs), such as Do Not Climb and
Do Not Climb > 500 ft/min. The least restrictive, or weakest, VSL is Do Not Climb > 2000 ft/min,
while the most restrictive, or strongest, VSL is Do Not Climb (and their upward sense counterparts).
The VSLs are also called negative RAs because they only require that the pilot not do something
to avoid conflict. Table 1 is a list of all possible RAs that TCAS can initially issue to the pilot.
Depending on the development of an encounter, TCAS can modify the strength of the RA or issue
sense reversals and increase rate RAs if it predicts that the vertical separation, perhaps due to
neglect of the issued RA, will be insufficient in the future.

The TCAS logic consists of several components: threat detection, initial sense selection, initial
strength selection, and encounter monitoring and RA modification. The following sections outline
the behavior of these components; further detail can be found elsewhere [5, 6].

1.2.1 Threat Detection

The threat detection component of the logic determines whether any nearby altitude-reporting
aircraft are potential collision threats. TCAS decides to issue RAs based on the projected time
until the closest point of approach (CPA) in range and in altitude. These quantities are called
the range tau and the vertical tau, respectively. The range tau is equal to the slant range to the
intruder divided by the closure rate. It is the amount of time required to reach zero separation
assuming constant closure rate for the remainder of the encounter. The vertical tau, similarly, is
equal to the altitude separation divided by the relative vertical rate between the aircraft.

To account for the possibility that the intruder might accelerate toward own aircraft at some
time in the future, thereby shortening the time to CPA, a second quantity is defined called modified
tau, which is always less than tau. Modified tau assumes a particular model for future range
acceleration by the intruder toward own aircraft. It is approximately equal to the time until the
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TABLE 1

List of initial RAs, adapted from [5].

Upward Sense Downward Sense

RA Type RA Target Rate (ft/min) RA Target Rate (ft/min)

Positive Climb 1500 to 2000 Descend −1500 to −2000
Positive Crossing Climb 1500 to 2000 Crossing Descend −1500 to −2000
Positive Maintain Climb 1500 to 4400 Maintain Descend −1500 to −4400
Negative Do Not Descend > 0 Do Not Climb < 0
Negative Do Not Descend > 500 > −500 Do Not Climb > 500 < 500
Negative Do Not Descend > 1000 > −1000 Do Not Climb > 1000 < 1000
Negative Do Not Descend > 2000 > −2000 Do Not Climb > 2000 < 2000

intruder aircraft is projected to penetrate a safety buffer around own aircraft, defined as a sphere
of radius DMOD, and is zero when the intruder range is less than or equal to DMOD. Modified tau
also addresses another problem with using tau alone to define the time until CPA and to trigger
RAs: at very slow closure rates, the intruder can get very close to own aircraft before tau becomes
small enough to trigger an RA. The interval between modified tau and tau is called the critical
interval and is taken to be the interval of time during which horizontal separation could be lost.

Additional constraints are placed on tau and modified tau to avoid problems that arise if the
intruder is not on a direct collision course (which TCAS cannot always determine based on range
and range rate measurements) or if the intruder is closing very slowly. In the former case, tau and
modified tau will reach a minimum and begin to increase prior to CPA, giving a false estimate of
the remaining time until CPA. In the latter case, their values can become unreasonably large. To
prevent this, the critical interval is limited to a maximum time interval of interest.

If the intruder is diverging in altitude, vertical tau is not meaningful. In that case, the
decision as to whether to issue an RA is based on whether the projected vertical separation during
the critical interval exceeds a minimum threshold.

Before being declared a threat, the intruder aircraft must pass both range and altitude tests.
The range test checks whether modified tau is less than a certain time threshold. The time thresh-
old, called TRTHR, is typically larger at higher altitudes. As part of the range test, TCAS also
performs several nuisance alarm tests to prevent intruders that have large horizontal miss distances
from being declared threats. It also may delay threat detection if it appears likely that by doing
so it can avoid issuing an RA that forces the aircraft to cross altitudes.

The altitude test depends on whether the vertical separation is currently less than a threshold.
This threshold, called ZTHR, is a design parameter of the logic and is a function of the altitude
layer. If the intruder’s vertical separation is less than ZTHR, the intruder passes the altitude test if
the projected vertical separation during the critical interval is also less than ZTHR. If the current
vertical separation is greater than ZTHR, the altitude test is passed if the intruder is converging in
altitude and vertical tau is less than a threshold called TVTHR. TVTHR is typically larger at higher
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altitudes and is typically the same as the range test threshold TRTHR. During threat detection,
future aircraft altitudes are predicted using linear extrapolation.

1.2.2 Initial Sense Selection

If TCAS declares an intruder a threat, it proceeds to select the sense of the initial RA to issue
the pilot. The sense can either be up or down, depending on the maneuver performed as a result of
executing the RA. The up sense indicates that own aircraft is expected to pass above the intruder
as a result of RA execution, the down sense that own aircraft is expected to pass below. If the
sense is anticipated to cause the aircraft to cross in altitude, the sense is termed an altitude-crossing
sense. TCAS is strongly biased against selecting altitude-crossing RAs.

Often the sense selection is determined by the intruder, if it is TCAS-equipped and happens
to declare own aircraft a threat and performs sense selection first. In that case it will send a sense-
coordination message to own aircraft. If the sense of the intruder RA is not altitude-crossing, own
TCAS will select the complementary sense for its RA. However, if the sense transmitted by the
intruder is an altitude-crossing sense, TCAS may independently select its sense, provided certain
conditions are met—e.g., the Mode S address of own aircraft must be smaller than that of the
intruder, among others. If it selects the sense that is not complementary to that selected by the
intruder, its sense-coordination message to the intruder will cause the intruder to reverse its sense
selection.

In the event that TCAS determines its own RA sense, it models the response to both Climb
and Descend RAs and calculates the projected vertical separation during the critical interval. As
in the threat detection component, TCAS models the intruder’s trajectory as a straight line with a
constant vertical rate. As for own aircraft, TCAS implements a pilot delay model in which the pilot
requires five seconds to respond to an initial RA. After the pilot-response delay, the own aircraft
is modeled as accelerating at 0.25 g until reaching the target vertical rate, after which it maintains
that rate for the remainder of the encounter. The target vertical rate is 1500 ft/min for a Climb RA
and −1500 ft/min for a Descend RA. If own vertical rate is greater than 1500 ft/min in the sense
direction, the target vertical rate is the current vertical rate of own aircraft in that direction up to
a maximum modeled target vertical rate of 4400 ft/min.

TCAS issues RAs to ensure that the aircraft maintain at least the desired minimum vertical
separation during the critical interval. The desired minimum vertical separation, called ALIM, is a
design parameter of the logic. It is a function of the altitude layer and is less than the threshold
ZTHR.

TCAS will select the non-altitude-crossing sense, provided the aircraft are not within 100 ft
of each other vertically, if the projected vertical separation is at least equal to ALIM. Additionally,
an altitude crossing must not be projected to be inevitable. If these conditions are not met, TCAS
selects the sense that provides the greater separation. In the case that both senses provide the
same separation, TCAS always selects the down sense. Note that if the non-altitude-crossing sense
provides at least the minimum separation, TCAS selects this sense over the altitude-crossing sense
even if the latter provides more separation.

5



Descend
Climb

Time of
closest approach

d1

d2

Figure 1. Initial RA sense selection process.

Figure 1 is an illustration of how RA sense selection is performed. Because the up-sense
RA is an altitude-crossing RA, TCAS will select the down-sense RA if d2 ≥ ALIM and the other
conditions of the previous paragraph are met. Otherwise, TCAS will select the sense that provides
the greater separation, which again happens to be the down sense because d2 > d1.

1.2.3 Initial Strength Selection

The initial sense selection component determines whether a Climb or Descend RA, depending
on the sense selected, is projected to provide at least the minimum separation, or at least more
separation than the opposite sense. However, there may exist a vertical speed limit of the same
sense that provides sufficient separation and is less disruptive to the own aircraft trajectory. When
no prior RA has been issued against a particular intruder, the strength selection component of the
logic determines the weakest VSL that achieves at least the desired separation during the critical
interval. If none of the VSLs provides sufficient separation, the logic will select the positive Climb
or Descend RA as appropriate for the selected sense.

1.2.4 Encounter Monitoring and RA modifications

TCAS continues to monitor the development of an encounter and, if necessary, modifies the
initial RA that it issued. TCAS re-evaluates the effect of the current RA strength during every
update cycle after initial RA selection. If the selected RA is a VSL, it will be strengthened to a
stronger VSL or to a positive Climb or Descend if necessary to ensure adequate separation during
the critical interval. The strength of an RA is never reduced except when a Climb or Descend RA
can be weakened to a Do Not Descend or Do Not Climb VSL when own aircraft can safely level off.

If a Climb or Descend RA has been issued against a certain intruder but subsequent update
cycles indicate insufficient vertical separation, the logic performs tests to determine the feasibility of
reversing the sense of the RA. If the reversal tests do not permit sense reversal, the Climb or Descend
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Own aircraft
During RA: 0.25 g, 5 s delay
Otherwise: 1 ft/s2 vert. accel. noise

Intruder aircraft
1 ft/s2 vert. accel. noise

Time of
closest approach

τ = 20 s τ = 0 s

Conflict zone
±100 ft

Figure 2. Hypothetical collision avoidance problem.

RAs may be strengthened to Increase Climb or Increase Descend RAs, respectively, under certain
conditions. These increase rate RAs advise the pilot to climb or descend at least 2500 ft/min.

The pilot-response delay assumed by TCAS in projecting the results of all RA modifications
is 2.5 seconds. For sense reversals and increase rate RAs, own aircraft is assumed to accelerate at
0.35 g until reaching the target vertical rate.

1.3 HYPOTHETICAL COLLISION AVOIDANCE PROBLEM

This report uses a relatively simple, hypothetical collision avoidance problem to demonstrate the
concept of model-based logic optimization. There is a single unequipped intruder approaching with
a constant closure rate. The collision avoidance system on the own aircraft may issue one of two
RAs that correspond to climb and descend vertical maneuvers. The Climb RA advises the pilot
to climb at least 1500 ft/min. The Descend RA advises the pilot to descend at least 1500 ft/min.
When an RA is issued, it takes the pilot five seconds to respond, after which the pilot applies a
0.25 g acceleration to meet the minimum desired vertical rate. If the pilot is already complying
with the RA (e.g., descending 2500 ft/min when a descend RA is issued), no acceleration is applied.
The intruder vertical acceleration follows a white noise model with a standard deviation of 1 ft/s2.
When the own aircraft is not responding to an RA, its vertical acceleration follows the same noise
model as the intruder. Figure 2 summarizes the properties of the problem.

The state variables are as follows:

• h, the altitude of intruder relative to own,

• τ , the time to closest horizontal approach,

• ḣ1, own vertical rate,

• ḣ2, intruder vertical rate, and

• sRA, RA state variable.
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TABLE 2

Distribution of aircraft start states in the hypothetical collision avoidance problem.

Variable Range Distribution

h (ft) [−500, 500] uniform
τ (s) 20 —
ḣ1 (ft/min) [−1000, 1000] uniform
ḣ2 (ft/min) [−1000, 1000] uniform
sRA clear of conflict —

In this problem, a conflict occurs when τ = 0 and |h| < 100 ft. Appendix A provides a mathematical
specification for the probabilistic dynamics of these variables.

The initial state is selected randomly according to the distribution specified in Table 2. All
encounters start 20 seconds prior to closest horizontal approach. The values for h, ḣ1, and ḣ2 are
chosen uniformly within the specified ranges. No RA was previously issued prior to the start of the
encounter, hence the clear of conflict RA state. The distribution was chosen so that the system on
own aircraft alerts at a relatively frequent rate.

Although the model contains five state variables, it only adequately represents motion in a
head-on encounter in two spatial dimensions. In three spatial dimensions, aircraft may be ade-
quately separated horizontally at the time of closest approach (τ = 0). It is possible to extend
this model into three spatial dimensions by changing τ to mean the time to horizontal conflict
and modeling the influence of horizontal motion on τ (Section 7.1). Recently, several probabilistic
models have been developed based on radar data [7–10]. These can be integrated into the current
framework.

1.4 OVERVIEW

This section outlined the objectives of this report, briefly outlined the TCAS logic, and described
a simple encounter model to be used as a running example to illustrate the decision-theoretic
approach introduced in this report. The remainder of this report proceeds as follows.

Section 2 formulates collision avoidance as an optimization problem. It begins by formally
specifying the performance metric to be optimized in terms of conflict and alerting probabilities.
Because sensor information is imperfect and the future behavior of the aircraft involved in the
encounter cannot be known perfectly, the optimal logic will need to leverage models of uncertainty
in observation and state dynamics. This section connects the requirements of an optimal logic to
the body of work on Markov decision processes that can be solved using dynamic programming.

Section 3 discusses how dynamic programming can be used to find the optimal logic. It
presents a dynamic programming algorithm called fitted value iteration that involves discretizing the
state space and using a local averaging scheme to interpolate between the discrete states. Because
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the number of discrete states can become prohibitively large, methods to reduce the planning
complexity are introduced.

Section 4 presents an alternative method for developing collision avoidance logic that relies
on online sample-based estimates of the probability of future conflict between aircraft. Various
methods for estimating the probability of conflict are introduced. A variance-reduction technique
known as importance sampling is shown to provide more accurate estimates using fewer samples
than the naive approach. Several ways of using the probability of conflict in the development of
collision avoidance logic are discussed.

Section 5 discusses performance metrics and summarizes the results of the preliminary evalua-
tion of the logic developed in Sections 3 and 4. Performance tradeoffs inherent in the development of
collision avoidance systems are analyzed through the use of system operating characteristic curves.
This section also focuses on the instrumental role these curves play in the effective placement of
system parameters. The optimal logic is evaluated in a safety assessment tool developed at Lincoln
Laboratory and used in prior TCAS safety studies. The results of this preliminary evaluation are
presented.

Section 6 describes a collection of alternative approaches suggested in the literature for conflict
avoidance, including potential field methods, rapidly exploring random trees, geometric optimiza-
tion, and policy search. Advantages and disadvantages of each approach are discussed.

Section 7 outlines several areas of further research. The simple collision avoidance model
introduced earlier needs to be extended in several different ways. For example, the model will need
to be adapted to support advisory strengthening and reversal, equipped intruders, and nondeter-
ministic pilot response. Further investigation is also required into policy representation and issues
of model robustness.

Section 8 concludes the report.

There are nine appendices that further elaborate on concepts introduced in the body of this
report. Notation is local to the section or appendix in which it is introduced, except for the
notation used for the state variables (Section 1.3) and for dynamic programming (Section 3), which
are summarized in a table following the references.
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2. PROBLEM FORMULATION

Before attempting to find an optimal collision avoidance system logic, it is important to define
the metric by which collision avoidance systems are to be measured and compared. Section 2.1
describes a performance metric that may be used. Logic that optimizes performance must take
into account state uncertainty and dynamic uncertainty, both of which are discussed in Sections 2.2
and 2.3. Section 2.4 discusses how to use models of state and dynamic uncertainty to make optimal
decisions. Further discussion of some of the points introduced in these earlier sections is reserved
for Section 2.5.

2.1 PERFORMANCE METRIC

The performance metric needs to take into account the competing objectives of preventing conflict
and minimizing alert rate (where “alert” refers to an RA, not a TA, for the purposes of this report).
Other objectives may also be taken into consideration, such as flight-plan deviation. Prior TCAS
studies defined a conflict as a loss of separation 100 ft vertically and 500 ft horizontally [4]. Such
conflicts have been called near mid-air collisions (NMACs). Although this report focuses on conflicts
with other aircraft, in general conflicts could involve other forms of failure, such as collision with
terrain.

One way to balance conflict prevention with alert minimization is to define a cost metric that
is a function of whether a conflict or an alert occurred. Let C(ω) be one if a conflict occurred
during encounter ω and zero otherwise, and let A(ω) be one if the encounter involved an alert and
zero otherwise. The cost associated with a particular encounter ω may be denoted

c(ω) = C(ω) + λA(ω). (1)

The scalar λ is a parameter of the cost function that controls the cost of alerting relative to the
cost of conflict. This cost function amounts to assigning unit cost to conflict and a cost of λ to an
alert. The value of λ depends on the preference of the evaluators of the system. It may be difficult
for human designers to think in terms of relative costs, so instead of choosing λ directly, it may be
desirable to choose the λ that translates to the desired safety threshold as discussed in Section 5.
The linear form of Equation 1 is often used for multiple-attribute decision problems [11], but the
cost function need not be linear in general. Winder and Kuchar, for example, assign the same cost
to any encounter that involves a collision, regardless of whether an alert was issued [12].

One way to compare two different collision avoidance logics is to compare their expected cost
over the space of encounter scenarios. The expected cost is given by∑

ω

Pr(ω)c(ω), (2)

where Pr(ω) is the probability of encounter ω when using the system. Prior TCAS studies
involved developing encounter models from radar data to represent this probability mass func-
tion [1–3,7,9,13–16], although they focused primarily on computing probability of conflict metrics.
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A performance metric based on expected cost is certainly a sensible way to compare logics, but
alternative metrics exist [17].

Before discussing how to find a logic that provides the lowest expected cost, it should be
emphasized that, prior to this work, a multi-objective metric has not been directly used to evaluate
TCAS. Various metrics related to successful alerts and unnecessary alerts were treated indepen-
dently [18]. Even when using a multi-objective metric to compare logic, there is still value in
analyzing performance relative to individual objectives (Section 5).

2.2 STATE UNCERTAINTY

Determining whether to alert and which RA to issue requires knowledge of the state of the world.
Several attributes of the state are important in collision avoidance, such as own and intruder posi-
tions and velocities. Because TCAS can only make imperfect measurements due to the limitations
of its sensors, it is never completely certain about the actual state of the world. This uncertainty
can be modeled as a probability distribution over the space of possible states. In this report, b(s)
indicates the probability assigned to state s. In the literature, the mapping b is called a belief
state [19].

The current version of TCAS uses an altimeter to measure own altitude and beacon surveil-
lance to measure the range, altitude, and bearing of intruders. This report refers to the aggregate
of all of these sensor measurements at a particular time as an observation. Updating the belief state
based on an observation requires knowledge of sensor performance—certainly, it would be difficult
to make good decisions if there was no knowledge of how sensor measurements relate to the state
of the world. In particular, it is useful to know as well as possible the probability distribution over
observations given that the current state is s, which may be written Pr(· | s). The model used by
the system to represent this probability is called the observation model (or, sometimes, sensor or
noise model). It is also useful to have a dynamic model (or, sometimes, state-transition or process
model), which represents Pr(· | s, a), a distribution over future states given that action a was taken
from state s. The dynamic model represents how the state evolves in response to the actions taken
by the collision avoidance system.

Given the current belief state b, action a, and observation o, it follows from Bayes’ rule that
the updated belief state b′ is given by

b′(s′) = Pr(s′ | o, a, b)
∝ Pr(o | s′, a, b) Pr(s′ | a, b)
= Pr(o | s′)

∑
s

Pr(s′ | s, a)b(s). (3)

The process of updating the belief state is known as belief updating, filtering, or state estimation,
and there is a wealth of literature on the subject [20, 21]. A Kalman filter is one way to efficiently
update the belief state for certain classes of dynamic and observation models [22–24]. The current
version of TCAS uses an α-β tracker for altitude and an α-β-γ tracker for intruder range. These
trackers do not directly take into account explicit dynamic and observation models, but they have
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been tuned to work well for the TCAS operating environment. They also do not explicitly represent
a distribution over states; they simply output a single state estimate that is used by the threat
logic.

2.3 DYNAMIC UNCERTAINTY

The behavior of the aircraft involved in an encounter and the response of pilots to RAs is nonde-
terministic. If the current state is s and action a is taken by the collision avoidance system, the
probability distribution over the next state (say one second later) is given by Pr(· | s, a), which is
specified by the dynamic model. Because the current state is not known exactly, as discussed in
Section 2.2, the belief state b must be used to predict the state at the next time step:

Pr(s′ | b, a) =
∑
s

b(s) Pr(s′ | s, a). (4)

The dynamic model may be repeatedly applied to predict the future state any number of steps into
the future. Assuming that the state distribution is known t steps into the future, the following
formula may be used to estimate the state distribution t+ 1 steps into the future:

Pr(st+1 | b0, a0, . . . , at) =
∑
st

Pr(st+1 | st, at) Pr(st | b0, a0, . . . , at−1), (5)

where a0, . . . , at is the sequence of actions taken by the collision avoidance system. Equation 5
assumes that the dynamics are Markovian, meaning the distribution over states at the next time
step depends only on the current state and action executed. So long as sufficient information is
encoded in the state, this assumption is reasonable for a large class of dynamic systems [25].

As discussed by Yang, it is important that the dynamic model be as accurate as possible [26].
An inaccurate model can increase the collision or alert rate because it cannot adequately distinguish
safe from hazardous flight trajectories. The current version of TCAS, as well as many alerting
systems suggested in the literature [27–29], use deterministic (noiseless) dynamic models. These
systems often use straight-line projection of aircraft trajectories to predict whether a conflict will
occur. In order to compensate for the assumption that aircraft will not deviate from their nominal
trajectories, these systems artificially enlarge their conflict boundaries. Although such systems
can provide low probability of conflict, it is at the expense of a higher alert rate. Other systems
use worst-case trajectory models that determine whether a conflict is possible [30–32]. Although
this type of approach does not require artificially enlarging the conflict boundaries, it typically
has an unnecessarily high false alert rate because it does not distinguish threats according to
their likelihood. Kuchar and Yang survey a variety of different approaches that use probabilistic,
deterministic, and worst-case state projection [33].

2.4 OPTIMAL DECISION MAKING

Figure 3 shows the relationship between the tracker (belief updating process) and the logic that
decides upon the action to take at the current instant in time. The belief state b, as computed
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by the tracker in the current version of TCAS, is simply a single point estimate that assigns all
probability to a single state. In general, this need not be the case, and, in fact, it may be possible
to make better decisions if the uncertainty in the underlying state is distributed more realistically.

Although this report discusses tracking issues to some extent, the primary focus of this report
is on the logic. The logic is a function that takes as input a belief state b and outputs an action a
to be executed. In the optimal control literature, this function is often called a policy or decision
rule [25, 34, 35]. The objective is to use the dynamic and sensor models to find an optimal policy
π∗ that provides the lowest expected cost according to some metric.

Assuming that the state is known exactly, the expected cost when following a policy (not
necessarily the optimal one) satisfies the recursion

Jπ(s) = c(s, π(s))︸ ︷︷ ︸
current cost

+
∑
s′

Pr(s′ | s, π(s))Jπ(s′)︸ ︷︷ ︸
expected future cost

, (6)

where c(s, π(s)) is the immediate cost associated with being in state s and executing the action
specified by the policy π for that state. If Equation 1 is used as the encounter cost function, the
immediate cost is one if a conflict occurred for the first time, λ if the system alerted for the first
time, and zero otherwise. The function Jπ is called the cost-to-go function.

In order to calculate Jπ, it is useful to define the mapping Bπ:

BπJ(s) ≡ c(s, π(s)) +
∑
s′

Pr(s′ | s, π(s))J(s′). (7)

If J0 is the cost-to-go function that assigns zero to all states, then BπJ0 is the cost-to-go function
after one time step according to policy π. The cost-to-go function when following π for k decisions
is given by Bk

πJ0. Repeated application of Bπ leads to convergence to Jπ [25].

The optimal cost-to-go function obtained by following the optimal policy satisfies the recursion

J∗(s) = min
a

[
c(s, a) +

∑
s′

Pr(s′ | s, a)J∗(s′)
]
. (8)

The optimal cost-to-go function may be computed in a way similar to Jπ using the mapping B,
known as the Bellman update operator,

BJ(s) ≡ min
a

[
c(s, a) +

∑
s′

Pr(s′ | s, a)J(s′)
]
. (9)

Repeated application of B to J0 leads to convergence to J∗. This process is called value iteration.
Once the optimal cost-to-go function is computed, the optimal policy π∗ may be extracted as
follows:

π∗(s) = arg min
a

[
c(s, a) +

∑
s′

Pr(s′ | s, a)J∗(s′)
]
. (10)
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Figure 3. Data flow between the tracker and logic.

Generalizing Equation 8 to handle belief states instead of states is not difficult and is shown
elsewhere [19]. However, solving for the optimal cost-to-go function, and hence the policy, is very
difficult in general. A variety of approximation methods have been proposed in the literature [36,37]
and have been applied to airborne collision avoidance [38]. These methods plan over a sampling of
the space of belief states and appear to scale well to problems of small to moderate size.

The approach explored in this report avoids planning over the space of belief states by making
the following approximation:

π∗(b) = arg min
a

∑
s

b(s)
[
c(s, a) +

∑
s′

Pr(s′ | s, a)J∗(s′)
]
. (11)

Equation 11 is similar to Equation 10, except that the immediate cost and expected future cost
are weighted by the distribution encoded by the belief state. This approximation is known as the
QMDP value method [39, 40]. It amounts to assuming that all state uncertainty will vanish at the
next step. This approximation appears to work well for many applications but tends to fail in
problems where taking particular actions results in a significant reduction in state uncertainty. For
the TCAS sensor—as well as GPS-based sensors such as ADS-B—the particular action taken by
the collision avoidance system will have a negligible impact on state uncertainty. Nevertheless, it
would be interesting to compare the performance of QMDP against policies found by algorithms
that plan over the belief space, such as HSVI [36] and SARSOP [37].

2.5 DISCUSSION

This section has focused on logic optimization where the performance metric is a function of con-
flict and alert rates, but other objectives may also be taken into consideration. For example,
Wolf explored using flight-plan deviation as a performance metric for unmanned aircraft collision
avoidance [41]. This report does not focus on explicitly minimizing flight-plan deviation for two
reasons. First, minimizing false alerts will result in fewer flight-plan deviations. Second, flight-plan
information is not an input into the current version of TCAS.

The problem formulation presented in this section is known as a Markov decision process
(MDP). Such problems have been well studied since the work by Bellman in the 1950s [42], and
several books treat the subject in depth [34, 35, 43–45]. When the state is not known exactly, the
formulation is called a partially observable Markov decision process (POMDP) [19]. MDPs and
POMDPs have been applied to a variety of different problems, including robotic motion planning
[46], agricultural management [47], medical diagnosis [48], and spoken dialog systems [49]. There
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have also been several airborne collision avoidance applications for both manned and unmanned
aircraft [12,38,41,50–52].

Depending on the problem, it may be more natural to speak in terms of reward and value
functions, which are the opposites of cost and cost-to-go functions, respectively. Many of the
references provided in this report take the perspective of reward instead of cost. Although defining
the problem of collision avoidance in terms of reward is entirely valid, this report uses cost to avoid
having to work with negative rewards.

This report assumes that the dynamic and observation models are known. The dynamic
model can be inferred from recorded operational data and the observation model can be based
on sensor performance specifications. There is a body of work, however, on problems where the
dynamic model is unknown and performance is optimized through interaction with the world. This
active area of research is known as reinforcement learning [53, 54]. Some reinforcement learning
approaches involve learning an explicit dynamic model, but others do not. Because reinforcement
learning leads to changes in the behavior of the system over time in response to experience in the
world, this kind of approach may not be appropriate for a safety-critical system that needs to be
standardized and certified. However, some of the techniques can be applied to finding approximately
optimal policies offline that can then be “frozen” and evaluated just like those found using dynamic
programming.

The equations in this section assume that the state space (and hence the encounter space) is
discrete, allowing the summation over probability masses as in Equation 2, repeated here:∑

ω

Pr(ω)c(ω).

If the space is continuous, the summation would need to be changed to an integral and the proba-
bility mass would need to be changed to a density:∫

p(ω)c(ω) dω. (12)

This report assumes discrete state and encounter spaces to simplify notation. A continuous space
may be approximated arbitrarily well by a sufficiently fine discretization scheme. The next section
shows how to discretize the state space and apply dynamic programming.
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3. DYNAMIC PROGRAMMING APPROACH

The previous section described how to formulate the problem of collision avoidance using
a decision-theoretic framework. This section shows how dynamic programming can be used to
find the optimal logic. There are a variety of techniques for applying dynamic programming to
a problem with continuous variables. This report focuses on a grid-based method that involves
discretizing the state space, as will be discussed in Section 3.1. The number of discrete states grows
exponentially with the dimensionality of the state space. Depending on the size of the discrete state
space, it might not be practical to compute the optimal action for every possible state. Section 3.2
shows how the planning complexity can be reduced by eliminating states not reachable from the
current state. Section 3.3 shows how to use branch-and-bound pruning to further eliminate states
that are determined to be unreachable under the optimal policy. Section 3.4 shows plots of the
optimal policy evaluated on different cross sections of the state space. Section 3.5 provides further
discussion of some of the concepts introduced in this section.

3.1 FITTED VALUE ITERATION

Applying the value iteration algorithm (Section 2.4) is straightforward when the state space is
finite. The initial cost-to-go function J0 can be represented as an array in memory, where each
element in the array corresponds to the cost-to-go for a particular state. The array is updated with
each application of the Bellman operator until convergence.

If the state space is continuous, it is no longer possible to represent the cost-to-go func-
tion directly as a finite array. There are many strategies for representing the cost-to-go function,
including decision trees [55], neural networks [44], and self-organizing maps [56]. This report fo-
cuses on a method called fitted value iteration that uses local averaging from a finite set of states
S = {s1, . . . , sn} selected from the continuous state space. This method was shown by Gordon to
provide a stable approximation of the optimal cost-to-go function [57,58].

A variety of different sampling schemes can be used to choose S. One common method is to
define S as the vertices of a multidimensional grid spanning the state space. Table 3 shows the grid
edges used for the five-dimensional hypothetical collision avoidance problem (Section 1.3). This
discretization scheme results in |S| = 2.14 million states.

The cost-to-go function J is represented as an array of |S| elements, where the ith element
corresponds to J(si). To compute J(x) at an arbitrary state x, a variety of different interpolation
schemes can be used. Appendix C discusses several interpolation methods that were evaluated on
the hypothetical collision avoidance problem. One method that was found to work particularly well
is multilinear interpolation, which computes J(x) by taking the weighted average of the cost-to-go
function at the vertices of the grid cell (hyper-rectangle) that encloses x. The weight assigned to a
particular vertex is related to its distance from x.

Fitted value iteration begins by initializing all elements in the array representing J to zero.
The algorithm applies the Bellman update operator B (Section 2.4) to J at the states in S. The
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TABLE 3

Grid edges for the hypothetical collision avoidance problem.

Variable Symbol Grid Edges

Relative altitude h −1000,−900, . . . , 1000
Time to closest horizontal approach τ 0, 1, . . . , 20
Own vertical rate ḣ1 −2500,−2250, . . . , 2500
Intruder vertical rate ḣ2 −2500,−2250, . . . , 2500
RA state sRA clear of conflict, climb in 4 s, descend in 4 s, . . .

Bellman update operator generalized for a continuous state space is as follows:

BJ(s) ≡ min
a

[
c(s, a) +

∫
p(x′ | s, a)J(x′) dx′

]
. (13)

The integral on the right-hand side is the expectation of J over states selected from p(· | s, a), which
is the distribution over states at the next time step given that action a is executed from the current
state s. In general, an analytical solution to this integral does not exist, but it may be approximated
using sampling methods as discussed in Appendix D. Sigma-point sampling, which relies on a small
number of deterministically-chosen samples, works particularly well on the hypothetical problem
as shown in Section 5.3 (Figure 21).

The update operator when sampling from the next state distribution (Appendix D) and
interpolating the cost-to-go function (Appendix C) reduces to

BJ(s) ≡ min
a

[
c(s, a) +

∑
s′

T (s′ | s, a)J(s′)
]
, (14)

where T (s′ | s, a) is a discrete transition probability function defined over states in S. Repeated
application of this update operator results in the (approximately) optimal cost-go-go function
J∗, which may be used to extract an (approximately) optimal policy π∗. The quality of the
approximation depends on the level of discretization, interpolation method, and sampling scheme.

To determine the optimal policy from an arbitrary state x, simply apply the continuous
state-space generalization of Equation 10:

π∗(x) = arg min
a

[
c(x, a) +

∫
p(x′ | x, a)J∗(x′) dx′

]
. (15)

Again, the integral on the right-hand side can be evaluated using sigma-point sampling or some
other sampling scheme.

3.2 REACHABLE STATE SPACE

The relatively coarse discretization used for the hypothetical collision avoidance problem (Table 3)
results in |S| = 2.14 million states, which is manageable—value iteration can be done within seconds

18



Reachable with any π

Reachable with π∗

Figure 4. Notional diagram showing reachable states under the optimal policy π∗ and reachable states under
any policy π.

using a standard desktop computer. However, increasing the dimensionality of the state space to
include multiple intruders or other features such as intruder bearing can result in exponential
growth of the number of states. One approach to reduce the number of discrete states used in
value iteration is to only consider states reachable from the current state. The number of states
reachable from a given state is typically a small fraction of the total state space.

The procedure for determining the optimal action from the current state x begins by in-
crementally constructing a set of discrete states. The set is initialized with the discrete states
reachable after a single step following any action. Then, the discrete states that are reachable from
the discrete states already in the set are added to the set. The process repeats recursively until
there are no longer any new states to be added to the set. Once a complete set of reachable discrete
states is obtained, value iteration can be used to find J∗ at these states and the optimal action
from x can be determined using Equation 15.

Figure 5 shows the distribution over the number of reachable states from 10,000 randomly-
sampled initial states. The mean number of reachable states is approximately 838,606 states, which
is 39% of the entire state space. For more complex problems, the savings from only planning over
the reachable states can be even more significant.

3.3 BRANCH AND BOUND

The number of reachable states under any policy is generally small compared to the full state space,
but the number of reachable states under the optimal policy can be even smaller as illustrated in
Figure 4. Although finding the set of states reachable under the optimal policy requires knowing
the optimal policy, a branch-and-bound method can come close to restricting the planning effort to
states reachable under the optimal policy. The branch-and-bound method computes the optimal
policy with a k-step lookahead. If the time to horizontal closest approach is 20 seconds in the
simple two-dimensional problem, then k should be 20.

The branch-and-bound algorithm involves computing

J∗(s, a) = c(s, a) +
∑
s′

T (s′ | s, a)J∗(s′), (16)
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Figure 5. Effect of branch-and-bound pruning.

which is the cost-to-go from state s when executing a from the current state and then following the
optimal policy from that point on. In order to prune suboptimal actions, the algorithm requires
knowledge of a lower bound on J∗(s, a). The lower bound does not necessarily have to be tight,
although tighter bounds can lead to more pruning. In the hypothetical collision avoidance problem,
a lower bound on J∗(s, a) is J∗(s, a) = C(s) + λA(a), where C(s) = 1 if s is in conflict (zero
otherwise) and A(a) = 1 if a is an alert (zero otherwise).

Given some state s, the branch-and-bound algorithm recursively computes π∗(s) and J∗(s),
where π∗ is the optimal policy and J∗ is the optimal cost-to-go function. If the lookahead is zero,
then π∗(s) = arg mina c(s, a) and J∗(s) = mina c(s, a). If the lookahead is k and the available
actions are a1, . . . , an (sorted in ascending J∗(s, ai)), it first computes J∗(s, a1) using Equation 16.
The J∗(s′) on the right-hand side of Equation 16 is recursively computed using the branch-and-
bound algorithm with a lookahead of k − 1. If J∗(s, a1) ≤ J∗(s, a2), then the algorithm will prune
a2, . . . , an from consideration since it knows that choosing any of those actions will not lower the
expected cost. If, on the other hand, J∗(s, a1) > J∗(s, a2), then it is worth computing J∗(s, a2)
recursively. The process continues until the remaining actions have been explored or pruned from
consideration. The optimal action π∗(s) is the action that provides the lowest value for J∗(s, a).

Figure 5 shows the reduction in the number of reachable states due to branch-and-bound
pruning. The mean number of reachable states was reduced to 475,279 states, which represents
22% of the state space. The savings can be even more significant when there are more actions (i.e.,
more kinds of alerts) from which to choose (Section 7.7).
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3.4 POLICY PLOTS

To obtain an approximation to the optimal policy of Equation 15, the state space was discretized
and fitted value iteration was performed. The integral of Equation 15 was approximated as a sum
over the next state distribution, evaluated using sigma-point sampling and multilinear interpolation.
The cost of alerting λ was arbitrarily chosen to be 0.1.

Figure 6 shows the policy for different h-τ cross sections of the state space. The cross sections
are defined by the tuple (ḣ1, ḣ2, sRA) and are supplied in the subfigure captions. Overlaying the plots
are three trajectories starting from a variety of states. The trajectories correspond to the projected
noiseless motion of the aircraft while executing each of the three actions. After the five-second
pilot-response delay, the trajectory moves downward (to smaller values of h) while executing the
Climb action and upward (to larger values of h) while executing the Descend action. The noiseless
motion of the aircraft without alerting, called the nominal trajectory, follows a straight line. A
trajectory is colored red if it terminates in conflict.

The policies largely agree with intuition. For instance, when both aircraft are flying level,
as in Figure 6(a), the policy is symmetrical, indicating the best action for the own aircraft is to
descend if the intruder is close enough above and to climb if the intruder is close enough below.
This is because, although the aircraft are flying level, the noisiness in the aircraft vertical rates does
have the potential of causing a conflict when the aircraft are near each other. Effective placement
of the alerting boundaries, however, is not intuitive. Through the use of dynamic programming,
the placement of the alerting boundaries was optimized to minimize the expected cost. Because the
policy generation process does not rely on random sampling, the alerting boundaries are smooth
and well defined.

The other plots, which represent the policy for slices in which the aircraft are either climbing
or descending, are not symmetrical. In Figure 6(b), for example, because the own aircraft is flying
at 1000 ft/min, issuing a descend RA has a greater effect on the own vertical rate than issuing a
climb RA, as the simulated trajectories serve to show. Therefore, in cases when an alert is necessary,
the policy favors descending. However, in some cases, it is still necessary to climb. For example, in
some regions where the intruder is close enough above the own aircraft, the policy suggests climbing.
This is similar to an altitude-crossing RA. As expected, the policy rarely advises a maneuver when
the own aircraft is above the intruder.

A striking feature of the policies is the conspicuous absence of any alert when there is little
time until horizontal closest approach and the aircraft are closely separated in altitude. Intuition
would seem to suggest that this is a crucial time at which an alerting system should alert to reduce
the threat of conflict. However, because the hypothetical collision avoidance problem assumes
that the pilot takes five seconds to respond to the RA, the aircraft are very likely to come into
conflict with or without an RA. In this case, there is no incentive to alert because the expected cost
without alerting is actually lower than the expected cost with alerting. As the pilot-response delay
is decreased, the alert boundary moves to the left. If the pilot-response delay is made probabilistic
with some probability of immediate response, the alerting region may extend fully to the left
(Section 7.2).
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Figure 6. Collision avoidance policies generated using dynamic programming. The caption of each subfigure
indicates the cross section (ḣ1, ḣ2, sRA) for which the policy is evaluated. The horizontal axis represents τ
in seconds, and the vertical axis represents h in feet.
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In each of the plots, although the nominal trajectory does not result in conflict, the policy
recommends executing an action. Due to the noise in the system, the relative path of the intruder
will deviate, however slightly, from the projected straight-line path. The introduction of this noise
causes the expected probability of conflict in the future to be non-zero. The expected cost while
following the RA trajectory, in turn, is less than the expected cost while following the nominal
trajectory.

3.5 DISCUSSION

This section discussed how to compute the optimal policy offline (Section 3.1) and how to compute
the optimal action from the current state online (Sections 3.2 and 3.3). Offline solution methods
involve computing a representation of the optimal policy from all possible states. The policy
representation is then used online with minimal computational effort. Online solution methods
involve computing the best action from the current state during execution. In general, online
solution methods require much more computational effort while making decisions and can only
plan for contingencies within a finite time horizon.

There are many other online solution methods besides the ones discussed here [59], including
methods like LAO* that use heuristics to reduce the planning space [60]. It is important to note
that online solution methods can be used offline to determine the optimal action from a sampling of
states. The optimal policy can be approximated by a classifier trained on the sampled states [61,62].
The classifier can be compactly represented, for example, as a support vector machine, neural
network, decision tree, or human-readable logic. For TCAS, an online solution method can be used
to aid human designers in tuning the parameters of existing logic to match the optimal policy at a
selection of states.

Many offline methods, such as fitted value iteration, involve modeling the cost-to-go function
over the entire state space using local approximation. This section discussed one way to model the
cost-to-go function by interpolating values at the vertices of a multidimensional grid spanning the
state space. The experiments discussed in this report use grids with regularly-spaced edges, but
for some problems it may be desirable to increase the resolution in some regions of the state space
where it is needed to better approximate the cost-to-go function, while leaving the resolution coarse
in other regions to reduce memory and computational requirements. Munos and Moore show how
to dynamically infer a suitable multiresolution representation [63].

An alternative to local approximation of the cost-to-go function is global approximation using
a parametric representation, such as a neural network. Such an approach has been studied exten-
sively in the reinforcement learning community and has been successfully applied to a variety of
problems [44]. If development of the grid-based local approximation method pursued in this report
is found to have difficulty scaling to higher dimensions, a global parametric representation of the
cost-to-go function may be a way forward.

Approximate dynamic programming is an active area of research and there have been many
important advances in recent years allowing them to scale to increasingly more complex problems
[64]. This report explores only a handful of methods that were relatively simple to implement and

23



appeared to have the most promise. Increasing the complexity of the model to include multiple
intruders, for example, may require adopting or extending other solution methods.
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4. CONFLICT PROBABILITY ESTIMATION APPROACH

Although dynamic programming is a powerful optimization method, it can be difficult to
scale to problems with many state variables. An alternative method that may scale more gracefully
involves estimating the probability of conflict from the current state when issuing different alerts.
This differs from TCAS, which uses temporal and spatial criteria to issue alerts (Section 1.2).
A conflict probability estimation approach has been applied to a prototype alerting system for
free flight [65] and an alerting logic for closely spaced parallel approaches [66]. In the late 1980s,
researchers at Lincoln Laboratory investigated a conflict probability estimation approach for TCAS
III [67].

The ability to accurately estimate the probability of conflict upon which these alerting systems
are predicated is crucial if they are to properly detect conflicts. For example, a system that
overestimates the conflict probability is likely to have a high false alarm rate, while one that
underestimates the conflict probability is likely to have a high rate of missed or late detection [26].
Much research, therefore, has focused on conflict probability estimation based on analytic [68, 69],
numerical approximation [70,71], and Monte Carlo methods [72].

Conflict probability estimates based on analytic or numerical methods require strong as-
sumptions about the form of the dynamics, typically that the dynamics are adequately described
by linear-Gaussian equations. Monte Carlo simulation allows much greater flexibility in modeling,
although the computational demands can become prohibitively high. Estimating the probability
of a rare event such as aircraft conflict with a high level of confidence requires a large number of
samples. A variance-reduction technique known as importance sampling can deliver an estimator
that uses significantly fewer samples than direct sampling while providing the same accuracy. Dy-
namic programming can also be used to estimate conflict probability, but such an approach requires
discretization of the state space.

This section discusses and compares the performance of conflict probability estimation meth-
ods based on analytic approximation, dynamic programming, and Monte Carlo sampling. There
are conceivably many different alerting schemes that can be constructed based on the probability
of conflict. This section discusses three of them and presents plots of the resulting policies for slices
through the state space.

4.1 ANALYTICAL APPROXIMATION

The dynamics of the aircraft in the hypothetical collision avoidance problem can be approximated
by a linear-Gaussian system (Appendix B) that has two discrete modes: no-RA execution mode
and RA execution mode. By definition, a switch to RA execution mode occurs when own aircraft,
at any time, begins to apply a 0.25-g acceleration to reach the RA target vertical rate. During RA
execution, the motion of own aircraft becomes deterministic. The motion of the intruder remains
probabilistic.

Starting from an arbitrary initial state, the distribution representing the state uncertainty
can be propagated forward in time using the equations in Appendix B until τ = 0. The probability
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of conflict can be estimated by integrating the Gaussian distribution over h at τ = 0 from −100 ft
to +100 ft. Figure 7 illustrates the evolution of the distribution of h until the closest point of
approach, where the area under the curve is the estimate of the probability of conflict.

Another method of propagating the Gaussian distribution of the aircraft state relies on sigma-
point sampling (Appendix D) in which, at each time step, the distribution is approximated by
deterministically chosen sample points that are propagated through the true nonlinear system
dynamics. The resulting points approximate the distribution at the next time step.

4.2 DYNAMIC PROGRAMMING

Fitted value iteration (Section 3) can be used to estimate the probability of conflict for not alerting,
issuing a Climb RA, and issuing a Descend RA. The state space can be discretized using the same
scheme used earlier (Table 3). The cost function c(s) is one if s is a conflict state (τ = 0 and
|h| < 100 ft) and zero otherwise. The Bellman update operator for computing the probability of
conflict for action a at a discrete state s is

BJ(s, a) ≡ c(s) +
∫
p(x′ | s, a)J(x′) dx′, (17)

which, as suggested in Section 3, can be approximated using sigma-point sampling and mulitilinear
interpolation. The repeated application of the Bellman update operator leads to an estimate of the
cost-to-go function that is equivalent to the probability of conflict from s following a.

4.3 MONTE CARLO

An alternative method for estimating the probability of conflict relies on Monte Carlo sampling.
For example, a number of trajectories can be sampled from the probabilistic dynamic model (Ap-
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Figure 8. Comparison of state propagation using direct sampling versus importance sampling.

pendix A). The probability of conflict is the fraction of trajectories that result in conflict. This
is known as the direct Monte Carlo method, or direct sampling. The accuracy of the estimate
increases with the number of sample trajectories.

However, because the event of a conflict is typically rare, performing direct Monte Carlo
sampling in this fashion is inefficient. Sampling the trajectories from a different distribution, called
the proposal distribution, such that sample trajectories result in conflict with high probability would
lead to increased efficiency in estimating the probability of conflict. This is known as importance
sampling. To obtain an unbiased estimate of the probability of conflict, the sample trajectories
must be weighted according to the likelihood that they would have been produced by the original
distribution. Figure 8 highlights the difference between direct sampling and importance sampling.
The fact that few trajectories terminate in conflict using the direct sampling method makes it
a poor estimator of conflict probability [73]. Nearly all the trajectories produced by importance
sampling, however, result in conflict and therefore contribute to the conflict probability estimate.

The following sections outline several proposal distributions that were explored. Appendix E
provides a more detailed, mathematical discussion of the proposal distributions.

4.3.1 Constant Acceleration Proposal

The aircraft in the model experience random vertical accelerations in the form of zero-mean
Gaussian noise. The history of vertical accelerations, called the control trajectory, uniquely specifies
a state trajectory. Typically, these accelerations do not produce trajectories that result in conflict,
except when the start state is already near conflict. However, the zero-mean Gaussian distribution
from which the accelerations are sampled can be adjusted to artificially induce conflict trajectories.
At each time step along the state trajectory, one may calculate the accelerations that, if applied
constantly until CPA, would force the aircraft into conflict but that disturb the flight path of the
aircraft as little as possible. These constant accelerations can serve as the mean of the Gaussian
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distribution from which to sample the vertical accelerations at each time step. If this process
continues until CPA, it is likely that the resulting state trajectory will result in conflict.

4.3.2 Maximum-Likelihood Acceleration Proposal

A good proposal distribution should produce samples that result in conflict while still resem-
bling, as much as possible, the distribution of the model [73]. Because the accelerations in the
model are zero-mean, the mean of the proposal distribution should be as close to zero as possible
while still producing trajectories that terminate in conflict. Finding the sequence of accelerations
can be framed as an optimization problem where the objective is to minimize the square norm of
the accelerations subject to the constraint that a conflict occurs at τ = 0. After solving for the
acceleration sequence, the first set of accelerations is used as the mean of the proposal distribution
and the remaining accelerations are discarded. (In this way, it is similar to model predictive control
used in online trajectory planning [74].) As before, this process continues for the remainder of the
encounter.

4.3.3 Analytic Proposal

It can be shown that the optimal proposal distribution from which to sample the accelerations
at a particular time is proportional to the product of the probability of conflict at the next time
step with the distribution of the accelerations according to the model. Of course, it is not possible
to actually calculate the optimal proposal distribution because it requires that the probability of
conflict be known. However, by using an estimate of the probability of conflict in place of its true
value, the optimal proposal distribution can be approximated. An effective proposal distribution,
though still suboptimal, is a Gaussian distribution whose mean is approximately equal to the mean
of the optimal proposal distribution, which can be obtained by using the probability of conflict
estimate afforded by the analytic approximation described earlier.

4.3.4 Dynamic Programming Proposal

The dynamic programming proposal distribution is identical to that of the analytic proposal
distribution except that the dynamic programming estimate of the probability of conflict is used
to determine the mean of the distribution.

4.4 ESTIMATION COMPARISON

This section presents results demonstrating the performance of the various estimation methods
described above. The following abbreviations refer to the estimation methods: Analytic, DP,
Direct, IS-Constant, IS-ML, IS-Analytic, and IS-DP. The performance of an estimator is related
to how quickly the estimator converges to a stationary estimate. The standard error (SE) of the
estimator is σ/

√
N , where σ is the sample standard deviation and N is the number of samples.

Figures 9 and 10 show convergence plots for P̂r(C | x, a) and SE[P̂r(C | x, a)], estimates of
the probability of conflict and its standard error, from three different states while executing the no
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alert and descend actions, respectively. The plots on the left show P̂r(C | x, a), while the plots on
the right show SE[P̂r(C | x, a)]. The tuples on the left panel indicate the states from which the
probability of conflict is estimated. All plots show convergence for up to 1000 sample trajectories
except for the last two plots of both figures for which more trajectories are needed because the
probability of conflict is low. In all cases, importance sampling converges fastest, and the analytic
proposal distribution consistently provides the lowest standard error. When the probability of
conflict is low, on the order of 10−3 for the last two plots, estimating the probability using direct
sampling is inefficient, requiring many more samples than the importance sampling estimators to
converge to a reasonable estimate. Observe that in some of the plots, certain estimates do not
appear because they are far removed from the other estimates. Moreover, the standard error for
the Analytic and DP estimates is zero, but these are not included in the standard error plots.

Note particularly that for the no alert action, the analytic approximation is quite accurate as
all estimators tend to approach its estimate as the number of sample trajectories increases. The
analytic approximation for the other actions, however, performs poorly due to its linear-Gaussian
approximation. However, using importance sampling with a proposal distribution derived from
the analytic approximation converges to values comparable to those of the other estimators with
low standard error. This result suggests that rough approximations of conflict probability can
still be exploited to generate proposal distributions that achieve lower variance than their direct
counterpart.

The accuracy of the dynamic programming estimates can be quite poor compared to the
other methods because of the coarseness of the discretization. Several experiments have shown
that increasing the granularity of the discretization improves the accuracy of its conflict probability
estimates at the expense of requiring many more states.

4.5 POLICY GENERATION

Several different strategies have been suggested for using conflict probability estimates to decide
when to alert. This report focuses on the following three strategies for constructing policies:

1. Conservative policy: Carpenter and Kuchar [66], in the development of logic for closely
spaced parallel approach, suggested alerting when the probability of conflict without alerting
exceeds a set threshold. The alert that minimizes the probability of conflict is chosen. If the
probability of conflict is minimal without alerting, no alert is issued. This policy is called
conservative because it alerts no later (and typically much earlier) than the other policies.
(Figure 11(a))

2. Delay policy: In the late 1980s, Lincoln Laboratory researchers developing TCAS III pro-
posed waiting to alert until the conflict probabilities for all actions reach or exceed the thresh-
old [67]. This strategy is referred to as the delay policy because it tries to delay alerting as
much as possible. (Figure 11(b))
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Figure 9. Convergence plots from several different states for the no alert action.
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Figure 10. Convergence plots from different states for the descend action.
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3. Conservative delay policy: This strategy waits until there is a unique alert that has a
probability of conflict below the threshold. It typically alerts after the conservative policy
but before the delay policy. (Figure 11(c))

The longer alerts are delayed, the less likely the alert will be unnecessary but the more likely
it will come too late to prevent conflict. Figure 12 illustrates the difference in alert timing for the
three strategies when the alert threshold is set to 0.1. The conservative strategy alerts as soon as
the conflict probability when not alerting reaches the threshold. It issues a climb advisory because
it provides the lowest probability of conflict at that point in time. The conservative delay strategy
waits until there is a unique advisory (in this case, climb) that provides a conflict probability
less than the threshold. The delay strategy waits until the moment all alerts meet or exceed the
threshold before it issues a climb advisory.

Yang and Kuchar developed a multistaged threshold alerting system for free flight that does
not fit into one of the three categories above [65]. In their prototype system, low-probability threats
produced passive alerts (e.g., changing the color of a traffic symbol) while high-probability threats
produced aural zone transgression messages to indicate to the pilot that an evasive maneuver should
be performed to resolve the conflict. There are four alert stages in total. During the first three
stages, alerts are issued to aid the pilot in resolving the conflict before tactical maneuvering is
required. During the fourth stage, air traffic control intervenes by issuing commands (e.g., heading,
vertical rate, or speed changes) intended to increase the amount of separation. The alerting logic
delays the issuance of an alert if a sufficient number of maneuvers is still available to the pilot in
order to resolve a conflict. They defined a maneuver as available if the probability of conflict would
be reduced to less than 0.05 by performing the maneuver.

4.6 POLICY PLOTS

This section presents visual representations of the policies of Section 4.5. The policy plots are
similar to those presented in Section 3.4. All plots show the policy for h-τ cross sections of the
state space. Figures 13, 14, and 15 show the policies generated by the three alerting strategies for
four different cross sections defined by the tuple (ḣ1, ḣ2, sRA), as supplied in the subfigure captions.
The probability of conflict was estimated using importance sampling with the maximum-likelihood
proposal distribution (Appendix E.2) with 100 sample trajectories. The threshold on the probability
of conflict was arbitrarily set to 0.01.

The policies largely agree with intuition. For instance, when both aircraft are level, as in
subfigures (a), the best action for the own aircraft is to descend if the intruder is close enough
above and to climb if the intruder is close enough below. This is because, although the aircraft are
flying level, the noisiness in the aircraft vertical rates does have the potential of causing a conflict
when the aircraft are near each other.

When the own aircraft is climbing at 1000 ft/min and the intruder is level, as in subfigures (b),
the best action is to descend when the intruder is above even when the vertical separation is large.
When the intruder is above and very close in altitude, i.e., less than 100 ft, the policy recommends
climbing. This is similar to an altitude-crossing RA in the current TCAS logic (Section 1.2).
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Is the probability of conflict
without alerting greater than λ?

Issue the alert that minimizes
the probability of conflict

yes

Do not alert
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(a) Conservative policy.

Is the probability of conflict
without alerting greater than λ?

Does there exist at least one alert
that will reduce the probability of

conflict to less than λ?

Do not alert

yes

Issue the alert that minimizes
the probability of conflict

no

yes

Do not alert

no

(b) Delay policy.

Is the probability of conflict
without alerting greater than λ?

Is there a unique alert with a
probability of conflict less than λ?

Issue the alert that minimizes
the probability of conflict

yes

Do multiple alerts have a
probability of conflict less than λ?

Do not alert

yes

Issue the alert that minimizes
the probability of conflict

no

no

yes

Do not alert

no

(c) Conservative delay policy.

Figure 11. Decision trees for alerting policies.

33



co
ns
er
va
tiv

e
al
er
t

co
ns
er
va
tiv

e
de
lay

al
er
t

de
lay

al
er
t

threshold

0 5 10 15 20 25 30 35 40 45 50 55 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

t (s)

Pr
(C

)

No alert
Climb
Descend

Figure 12. A notional diagram illustrating the difference between the three alerting strategies. In this
diagram, the alerting threshold is set to 0.1. The probability of conflict for the various actions is plotted.
The times at which the different alerting strategies issue a climb advisory are indicated.

This might appear counter-intuitive. However, this is justified because the own aircraft is already
climbing. If the descend maneuver were issued, much of the RA execution would consist of reversing
direction, thus resulting in a higher probability of conflict. An analogous argument holds for
subfigures (c) and (d).

Other observations about the policies are also worthy of mention:

• When τ is small, there is usually no incentive in alerting because the five-second pilot delay
makes any evasive maneuvers useless.

• The policy of Figure 14 rarely alerts due to the fact that, as Figure 11(b) indicates, there is
almost always one action for which the probability of conflict falls below the threshold.

• The conservative policy and conservative delay policy are very similar except that the latter
alerts less when τ is large and the vertical separation is relatively small. This is because in
such circumstances there are multiple actions, i.e., both the climb and descend maneuvers,
for which the probability of conflict falls below the threshold.

• The conservative policy is likely to have a high false alarm rate and low conflict rate compared
to the delay policy. The conservative delay policy is likely to provide a balance between the
two.
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Figure 13. Collision avoidance policy generated by the conservative strategy. The caption of each subfigure
indicates the cross section (ḣ1, ḣ2, sRA) for which the policy is evaluated. The horizontal axis represents τ
in seconds, and the vertical axis represents h in feet.
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Figure 14. Collision avoidance policy generated by the delay strategy. The caption of each subfigure indicates
the cross section (ḣ1, ḣ2, sRA) for which the policy is evaluated. The horizontal axis represents τ in seconds,
and the vertical axis represents h in feet.
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Figure 15. Collision avoidance policy generated by the conservative delay strategy. The caption of each
subfigure indicates the cross section (ḣ1, ḣ2, sRA) for which the policy is evaluated. The horizontal axis
represents τ in seconds, and the vertical axis represents h in feet.
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4.7 DISCUSSION

This section compared analytic, dynamic programming, and Monte Carlo methods for estimating
the probability of conflict in the hypothetical collision avoidance problem. Although the encounter
model is relatively simple, the analytic method had difficulty providing accurate conflict probability
estimates because the dynamics are not exactly linear-Gaussian. Approximating the behavior of
more complex encounter scenarios with linear-Gaussian dynamics and analytically solving for the
conflict probability will likely result in poor estimates. The accuracy of the estimates provided by
dynamic programming was limited due to the coarseness of the state space discretization. Although
the dynamic programming estimates could be improved by increasing the level of discretization,
this can require an infeasible number of states, especially if the dimensionality of the state space is
large.

Of the methods discussed in this section, conflict probability estimation using Monte Carlo
sampling seems to be the most promising. The quality of Monte Carlo estimates can be significantly
improved if a suitable proposal distribution is used and the samples are appropriately weighted.
Several different proposal distributions were considered, including proposal distributions that lever-
age information from analytic approximations and dynamic programming solutions. Although the
analytic or dynamic programming estimates may in themselves be inaccurate, it was shown that the
heuristic information they provide can be used to improve the efficiency of Monte Carlo estimates
through importance sampling.

Incorporating higher-fidelity encounter dynamics in three spatial dimensions would likely de-
generate the accuracy of analytic methods even further. Moreover, discretizing the state space
sufficiently fine for accurate dynamic programming estimates may be challenging due to the higher
dimensionality of the models. In three-dimensional space, conflicts are much rarer because air-
craft can miss each other laterally in addition to vertically. Consequently, the advantage of using
importance sampling over direct sampling will be even more significant.

The performance of the policies of Section 4.5 is dependent on a number of factors. Using a
more accurate method for calculating the probability of conflict or increasing the number of sample
trajectories generally enhances performance. In the generation of the policies of Figures 13, 14,
and 15, the threshold was arbitrarily chosen. Effective threshold placement can be aided through
the use of system operating characteristic curves to be discussed in Section 5.

Although policies based on conflict probability estimates may perform well, they will not be
optimal in general. A simple example of this is shown in Figure 16. The current state is represented
by the root node. From this state, the system may either alert or not alert (for simplicity in this
example, climb and descend are not distinguished). If an alert is issued, then the probability of
conflict is some γ between zero and one. If an alert is not issued from the current state, the system
is given another opportunity to alert at the next state. From this next state, if an alert is issued,
a conflict is guaranteed not to occur, but if an alert is not issued a conflict is guaranteed to occur.
Dynamic programming, in this situation, will advise waiting to alert until the next state and will
prevent conflict. Any alerting strategy based solely on current conflict probability estimates will
alert because the conflict probability from the current state is one.
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Figure 16. An example of a situation where dynamic programming dominates a conflict probability approach
regardless of cost function or alerting threshold.

The example in Figure 16 was constructed to serve as a very simple situation where a dynamic
programming policy dominates a threshold policy, regardless of cost function or alerting threshold.
In realistic encounters, dynamic programming will provide better policies than a threshold approach,
assuming that the discretization used for dynamic programming is sufficiently fine. In practice, it
may be difficult to provide the level of discretization needed by dynamic programming to provide a
close to optimal policy. Further experimentation will reveal how well threshold alerting strategies
approximate the optimal policy in practice.
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5. EVALUATION

Due to the safety-critical nature of collision avoidance systems, extensive research over the
years has focused on developing a methodology for evaluating such systems. This section enumer-
ates a set of mutually exclusive and collectively exhaustive alerting system outcomes and discusses
performance metrics used in prior safety assessments of TCAS and other alerting systems. It
describes how system operating characteristic curves can provide a visual representation of perfor-
mance tradeoffs when varying design parameters. Finally, this section presents the results from a
preliminary evaluation of the dynamic programming (DP) logic using a safety assessment tool used
for evaluating previous versions of the TCAS logic.

5.1 ALERTING SYSTEM OUTCOMES

The outcomes of an alerting system scenario can be divided into six different categories depending
on three criteria: (1) whether an alert was necessary, (2) whether an alert was issued, and (3)
whether a conflict occurred. Before enumerating these categories, it is important to first define
what is meant by a necessary alert. Determining whether an alert is necessary in a particular
situation is not exactly straightforward because the dynamics are nondeterministic. The standard
approach is to run simulations both with and without the alerting system with the same random
seed. Because the seeds are the same, the trajectories with and without the system will be exactly
the same until after an alert is issued. Once the pilot responds to the alert, the trajectory with
the alerting system will diverge from the trajectory without the alerting system, called the nominal
trajectory. An alert is defined to be necessary if the nominal trajectory results in conflict.

Table 4 enumerates the possible alerting system outcomes as described by Winder and Kuchar
[75]. Figure 17 illustrates the outcomes using example trajectories. Note that, according to the
definition of necessary alert, the following two outcomes are not possible: (1) an alert is necessary,
an alert is not issued, and a conflict does not occur; and (2) an alert is not necessary, an alert is
not issued, and a conflict occurs.

TABLE 4

Outcome categories.

Outcome category Abbreviation Alert Necessary? Alert Issued? Conflict Occurred?

Correct Rejection CR
Correct Detection CD ✓ ✓
False Alarm FA ✓
Missed Detection MD ✓ ✓
Induced Conflict IC ✓ ✓
Late Alert LA ✓ ✓ ✓
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Figure 17. Alerting outcome categories. Solid lines indicate trajectories with the system. Dotted lines indicate
trajectories without the system. Red lines indicate that a conflict occurred with the system (solid) or that a
conflict would have occurred without the system (dotted).

5.2 METRICS

The performance of alerting systems is usually assessed using a few relevant quantifiable perfor-
mance metrics. Many of these metrics can be calculated from counts of the six outcome categories
of Section 5.1 generated in simulation over a wide range of possible aircraft encounters. Here, CR,
CD, FA, MD, IC, and LA denote the counts of the alerting system outcomes.

1. Probability of conflict: The probability that a conflict occurs with the alerting system can
be estimated from the outcome counts, assuming each encounter is equally likely, as follows:

Pr(C) = MD + IC + LA
CR + CD + FA + MD + IC + LA . (18)

If the encounters are not equally likely, as will be the case in Section 5.4, the relative likelihood
assigned to each encounter must be taken into account.

2. Probability of alert: The probability that the system alerts can be approximated by the
frequency

Pr(A) = CD + FA + IC + LA
CR + CD + FA + MD + IC + LA . (19)

Together with the previous metric, an alerting system is deemed effective if Pr(A) is large
enough to achieve a suitably small Pr(C), but not any larger.

3. Probability of unnecessary alert: An alert is considered to be unnecessary if it is not
necessary to prevent conflict (i.e., the nominal trajectory does not result in conflict). The
probability of unnecessary alert, Pr(UA), is the probability that, when an alert is issued, it
is unnecessary. Pr(UA) can be approximated by

Pr(UA) = FA + IC
FA + IC + CD + LA + MD . (20)
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4. Probability of successful alert: An alert is considered to be successful if it is issued
and a conflict does not occur. The probability of successful alert, Pr(SA), is the probability
that, when an alert is issued, it is successful. An effective alerting system has a low rate of
unnecessary alert and a high rate of successful alert. Note that, according to the preceding
definitions of unnecessary and successful alert, an alert can be simultaneously classified as
unnecessary and successful. Pr(SA) can be approximated by

Pr(SA) = CD + FA
FA + IC + CD + LA + MD . (21)

5. Risk ratio: The risk ratio is a measure of the change in the probability of conflict due to
the equipage of an alerting system. It is a concise metric for assessing the safety benefit of
equipping an alerting system. It is defined as the ratio between the probability that a conflict
will occur with the alerting system and the probability that a conflict will occur without the
alerting system:

RR ≡ Pr(C | alerting system)
Pr(C | no alerting system) = MD + IC + LA

CD + MD + LA , (22)

where Pr(C | alerting system) is the probability of conflict with the alerting system and
Pr(C | no alerting system) is the probability of conflict without the alerting system. A risk
ratio of zero indicates that the system resolves all conflicts, while a risk ratio of one indicates
that the system provides no additional benefit in reducing the number of conflicts. Risk ratios
above one indicate poorly-designed alerting systems that increase the probability of conflict.
Risk ratio has been used in prior TCAS safety studies [1–3,14,76–78].

6. Unresolved risk ratio component: This is the component of the risk ratio that is due
to unresolved conflict risk. A conflict is unresolved if it occurs both with and without the
alerting system. It is given by

RRunresolved = MD + LA
CD + MD + LA . (23)

This is equivalent to the conditional probability of an unresolved conflict given that an alert
is necessary.

7. Induced risk ratio component: This is the component of the risk ratio that is due to
induced conflict risk. A conflict is induced if it occurs with the alerting system but not
without the alerting system. It is given by

RRinduced = IC
CD + MD + LA . (24)

8. Vertical miss distance (VMD): This report defines VMD as the (nonnegative) vertical
separation between the aircraft at the point in the encounter when the horizontal miss distance
is minimal. Good alerting systems should increase VMD without excessively disturbing the
nominal flight path.
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Figure 18. Example SOC curve.

With additional information about encounter rates, several other metrics may be derived such
as mean time between conflict, which may be more intuitive as a safety indicator. The metrics above
depend on the rates of specific discrete events (e.g., whether or not a conflict or an alert occurred).
However, other metrics can be derived that summarize various continuous physical properties of
the simulations. For example, it may be insightful to study the effect of different systems on the
average flight-plan deviation [41] and the average vertical speed and acceleration [38]. Once the logic
supports RA changes and VSLs, a collection of other metrics can be defined (e.g., the rate of RA
reversals) to predict operational acceptability. Prior TCAS studies have used “triplet” outcome
metrics to compare performance across no alerting system and two other alerting systems [79].
These metrics will be discussed in detail in a future safety study after further development of the
DP logic.

5.3 SYSTEM OPERATING CHARACTERISTIC CURVES

The performance of an alerting system depends on many different parameters, such as dynamic
model parameters, sensor model parameters, and alerting thresholds. The evaluation of alerting-
system performance, therefore, can be quite complex. Kuchar [18,80] developed a unified methodol-
ogy for the evaluation of alerting-system performance in which performance tradeoffs are analyzed
through the use of system operating characteristic (SOC) curves. SOC curves, analogs of receiver
operating characteristic (ROC) curves in signal detection theory [81], were originally introduced as
plots of Pr(CD) versus Pr(FA). This report considers a modified version in which Pr(SA) is plotted
against Pr(UA). A notional example of an SOC curve is shown in Figure 18.

Each point on the SOC curve is called an operating point. The shape of the curve is traced out
as the alerting threshold, or any system parameter, is adjusted. Each alerting threshold maps to an
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operating point. The ideal operating point is at the top-left corner of the plot, where Pr(UA) is zero
and Pr(SA) is one. Due to uncertainty in the state and measurements, the ideal operating point
is usually not obtainable. The dashed line represents the SOC curve for a system that provides
no additional benefit; an alert is equally likely to be successful as it is unnecessary. Curves to
the left of this line indicate systems that increase the probability of successful alert for the same
level of unnecessary alerts. The closer the operating points are to the upper-left corner, the better
the system performs. Through the use of an SOC curve, the effect of a system parameter change
directly maps to a difference in system performance, thus highlighting the performance tradeoffs
that must be brought to bear in the placement of effective system parameters.

Variants of the SOC curve are possible, so long as the horizontal axis represents the undesirable
outcome (to be minimized) and the vertical axis the desirable one (to be maximized). One variant
of the SOC curve involves plotting 1 − Pr(C) against Pr(A). The advantage of this SOC curve is
that the changes in the overall level of safety, 1−Pr(C), which is sometimes more tangible, can be
analyzed directly.

This section discusses SOC curves generated in a simulation framework that uses the hypo-
thetical collision avoidance dynamics of Appendix A. Figure 19 outlines the simulation framework
used to compute the performance metrics of Section 5.2. The next section discusses evaluation
with an aircraft dynamic model that is significantly more realistic and has been used in prior
TCAS safety studies.

Figure 20(a) presents the SOC curves of Pr(SA) versus Pr(UA) produced by varying the
cost of alerting λ from zero to one in discrete steps. Each operating point was obtained from
running 10,000 encounters in simulation. The upper-right regions of the curves correspond to costs
of alerting near zero and the lower-left regions correspond to costs near one. Each of the three SOC
curves was produced by varying the level of uncertainty in the state as encoded in the amount of
noise in the aircraft vertical rates. The amount of noise is controlled by the standard deviation of
the vertical acceleration of the aircraft, ḧ. Figure 20(b) is a plot of 1− Pr(C) versus Pr(A), again
for the three levels of system noise.

To gauge the performance of the DP logic against the existing TCAS logic, a simplified ver-
sion of the TCAS logic, called mini TCAS, was implemented. Appendix I outlines the principal
assumptions of mini TCAS. The real TCAS algorithm periodically receives noisy measurements of
the range, bearing, and altitude of nearby intruders and initializes and maintains intruder tracks
based upon these surveillance data. Additionally, TCAS knows information regarding the own
aircraft state with some level of uncertainty. Mini TCAS, on the other hand, receives perfect infor-
mation about the own aircraft and intruder states and issues alerts based solely on this information.
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Figure 20. SOC curves for the DP logic at different noise levels. Operating points for the TCAS logic at
different sensitivity levels are shown as dots.

This amounts to perfect tracking of own and intruder aircraft. Figure 20 shows several operating
points of the mini TCAS system (represented as colored dots). Each operating point corresponds
to a different altitude for own aircraft. Each altitude maps directly to a particular value for the
altitude layer and sensitivity level parameters of the TCAS logic. All the TCAS thresholds vary
as functions of either the altitude layer or the sensitivity level. Therefore, adjusting the altitude of
own aircraft causes mini TCAS to alert differently. Table 5 is a list of the own altitude, sensitivity
level, and altitude layer for each of the TCAS operating points of Figure 20.

If the cost of alerting is high, Pr(SA) and Pr(UA) are small because it is not advantageous
to alert. When the cost of alerting is decreased, alerts are issued more frequently, increasing
both Pr(SA) and Pr(UA). In general, the system performance degrades as the system uncertainty

TABLE 5

Own altitude, sensitivity level, and altitude layer of TCAS operating points.

Own Altitude (ft) Sensitivity Level Altitude Layer

1000 3 1
3000 4 2
7000 5 3
15,000 6 4
30,000 7 5
43,000 7 6
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increases. The alerts produced by the TCAS logic are mostly successful but, as is often the case,
mostly unnecessary. This is understandable because the objective of TCAS is to provide a minimum
level of vertical separation (ALIM) that is always greater than the vertical separation that defines
a conflict. In other words, TCAS alerts conservatively.

If, from an operational standpoint, the requirements on the system dictate that the rate of
unnecessary alert (or false alarm) cannot exceed a certain level, SOC curves can be used to find the
cost of alerting for which the probability of successful alert (or correct detection) is the highest.

Similar trends can be observed in Figure 20(b). When the cost of alerting is low, the overall
level of safety is as high as 99% but at the expense of over-alerting. In general, any alerting system
that issues alerts at a high rate is capable of ensuring a high level of safety. Even when the cost
of alerting is high, causing Pr(A) to be effectively zero, approximately 80% of encounters do not
result in conflict. This is equivalent to the percentage of conflict encounters without the alerting
system.

Appendix F proves that an optimal policy generated by dynamic programming satisfies the
following properties:

1. There is no other policy with the same alert rate and a lower conflict rate.

2. There is no other policy with the same conflict rate and a lower alert rate.

It follows from this result that optimal policies generated by dynamic programming will trace out
the best possible SOC curve, assuming that the discretization is sufficiently fine.

Figure 20 shows SOC curves for the logic obtained by approximating the integral of Equa-
tion 15 using sigma-point sampling and multilinear interpolation. This is just one of several methods
for estimating the expected cost-to-go at the next time step from each state. For example, instead
of drawing a fixed number of deterministic samples, as the sigma-point sampling method does,
direct Monte Carlo samples from p(x′ | x, a) can be drawn. Figure 21 shows the effect that using
direct Monte Carlo sampling has on the overall system performance. Unsurprisingly, performance
improves as more samples are used to estimate the expected cost-to-go. The use of the sigma-point
sampling method, which uses only five deterministically chosen samples that capture the mean and
covariance of p, results in the best performance while relieving much of the computational burden
involved in sampling the next states. In a similar manner, the effect of using different interpolation
methods and changing the resolution of the discretization can also be explored, although it is not
done so in this report.

The next set of SOC curves evaluates the conflict probability estimation approach for different
threshold settings. Figure 22 shows the SOC curves for the three policies of Section 4: conservative,
delay, and conservative delay. As before, 10,000 encounters were used to calculate each operating
point. The curves were traced out as the threshold on the probability of conflict was varied.
The action that was executed at each time step was determined by calculating the probability of
conflict online and applying the collision avoidance logic of Section 4. The probability of conflict
was estimated using 100 trajectories drawn from the maximum-likelihood acceleration proposal
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Figure 21. Effect of different sampling methods on overall system performance.

distribution. Alternatively, one could reduce computation time during the evaluation process, at
the expense of accuracy, through the use of a lookup table generated offline.

The range over which the threshold was varied to produce SOC curves that span the metric
space well depends on the policy. In the case of the conservative policy, the SOC curves were
plotted by varying the probability of conflict threshold from zero to one in uniform increments.
When the threshold is close to one, the system rarely alerts. When the threshold is near zero, the
system almost always alerts. Presumably, if the threshold is one, the probability of alerting, Pr(A),
should be zero. The curves of the conservative policy never extend to Pr(A) = 0, however. This
is because the estimate of the probability of conflict using importance sampling is not confined to
the interval [0, 1], as a true probability should. Therefore there is some non-zero probability that
the probability of conflict without alerting is greater than one and the system alerts. In the limit
as the number of sample trajectories approaches infinity, however, the estimate should lie within
the interval [0, 1]. The estimate can be forced to lie within the interval [0, 1] by normalizing the
weights. However, this introduces a bias that goes to zero as the number of samples approaches
infinity [82].

The SOC curves for the delay policy and the conservative delay policy were obtained by
varying the threshold from 10−30 to one and from 10−8 to one in a logarithmic scale, respectively.
The operating point corresponding to a threshold of zero was also computed. A logarithmic scale
was necessary to capture the variability of the curve in the regions where Pr(SA) and Pr(UA) are
high.
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The results suggest that all three policies perform similarly. The conservative policy out-
performs the other two, as shown by its SOC curves that almost always lie above and to the left
of the curves formed by the other policies. In other words, the conservative policy nearly always
achieves a higher rate of successful alert given some rate of unnecessary alert and a lower rate of
conflict given some alert rate. Moreover, the conservative policy tends to issue fewer alerts while
guaranteeing the same level of safety. In the limit as the alert rate goes to one, the rate of successful
alert and the rate that no conflict occurs for all policies tend to unity.

Appendix F implies that the curve of 1−Pr(C) versus Pr(A) for the optimal policy never lies to
the right of or below that of any other policy. However, because the policy calculated in this report
is only approximately optimal, due primarily to the discretization process, the results do indeed
indicate that there are some regions in which the other policies outperform the (approximately)
optimal policy. For example, when σḧ = 1 ft/s2, the lowest conflict rate that the optimal policy
achieves is 0.006 while the other policies achieve a minimum conflict rate of zero, given a sufficient
alert rate.

5.4 PRELIMINARY SAFETY EVALUATION

This section presents the preliminary safety evaluation of the dynamic programming logic using the
Collision Avoidance System Safety Assessment Tool (CASSATT), developed at Lincoln Laboratory.
CASSATT performs fast-time Monte Carlo analysis of close encounters between two or more aircraft
over a period on the order of one minute near the closest point of approach. CASSATT has
been used for prior TCAS safety analysis [76] and sense-and-avoid development for unmanned
aircraft [77].

The CASSATT framework was built in Matlab and Simulink and has been compiled into
native code using Real-Time Workshop. The framework was designed to be modular to allow
different collision avoidance systems and sensor models to be easily incorporated. CASSATT was
extended to allow communication with an arbitrary collision avoidance system over a TCP/IP socket
connection [38]. The collision avoidance system runs as a server to which CASSATT connects as a
client.

Figure 23 provides an overview of the simulation framework. An encounter model generates
the initial conditions and scripted maneuvers for both aircraft involved in the encounter. For
the purposes of this study, the encounter model developed by Lincoln Laboratory for cooperative
aircraft [7] was used. This encounter model was developed from nine months of national radar data
from over 120 sensors maintained by the Federal Aviation Administration and the Department of
Defense. A dynamic Bayesian network representing the behavior of the aircraft was learned from
actual encounters extracted from the data. Generating new encounters for use in Monte Carlo
analysis involves sampling from the dynamic Bayesian network.

The initial conditions define the starting positions of the aircraft. The scripted maneuvers
control aircraft velocities and accelerations at each time step. The dynamic model takes as input
the state and scripted maneuvers at the previous time step and returns the state of the aircraft at
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Figure 22. SOC curves for threshold alerting policies.
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Figure 23. CASSATT simulation framework.

the current time step. The state of one aircraft is represented by a seven-dimensional vector

(v,N,E, h, ψ, θ, φ), (25)

where N , E, and h are the north, east, and altitude components of the position in a local flat-earth
coordinate system, ψ, θ, and φ are the yaw, pitch, and roll angles, and v is the true airspeed. In a
two-aircraft system, the state is

x = (v1, N1, E1, h1, ψ1, θ1, φ1, v2, N2, E2, h2, ψ2, θ2, φ2), (26)

where subscript 1 refers to the own aircraft and subscript 2 refers to the intruder. The motion
of the aircraft is driven by controls in the turn rate, vertical rate, and airspeed acceleration, as
supplied by the encounter model or, optionally, as defined by the user. These control values may
change every tenth of a second. Aircraft transient response characteristics and performance limits
such as maximum pitch rate or bank angle are also included in the dynamic model.

The sensor model takes as input the current state from the dynamic model and produces
an observation, or sensor measurement. The sensor produces measurements of the own aircraft
altitude, hown, the intruder altitude, hint, the bearing to the intruder, χ, and the range to the
intruder, r. The measurement z is given by

z = (h̃own, h̃int, χ̃, r̃), (27)

where here the tilde is used to designate a measurement. The measured bearing is equal to the
true bearing plus additive zero-mean Gaussian noise with a standard deviation of 10◦. Similarly,
the modeled range noise is zero-mean Gaussian with a standard deviation of 50 ft. The altitude
measurements are quantized to 25-ft increments. The bias in the altimetry error is distributed
according to a Laplacian distribution whose parameters are dependent upon the altitude layer.
All sensor error parameters match those specified in the International Civil Aviation Organization
(ICAO) model [14].

Based on the most recent observation, the state estimation process updates the estimates of
the positions, hown, hint, and r, of the rates, ḣown, ḣint, and ṙ, and of the range acceleration, r̈. The
state estimate of the tracker xtracker is

xtracker = (ĥown, ĥint, r̂,
̂̇
hown,

̂̇
hint, ̂̇r, ̂̈r), (28)
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where a hat is used to designate an estimate. The state of the tracker (Equation 28) is not the
same as the full 14-dimensional state of the aircraft (Equation 26) as used in the dynamic model
(which is not completely observable). An α-β filter was used to track altitude and altitude rate, and
an α-β-γ filter was used to track intruder range, range rate, and range acceleration. The tracker
is a simplified version of the tracker implemented in the current version of TCAS for intruders
broadcasting altitude with 25-ft quantization. Appendix H discusses the tracker in further detail.

The DP logic is evaluated on the updated state estimate. Before evaluating the logic, the
output of the tracker, xtracker, must be mapped to an approximate input to logic evaluation, xlogic,
defined by

xlogic = (h, τ, ḣ1, ḣ2, sRA), (29)

as in Table 3. If an RA has not been issued and the aircraft are estimated to be closing (i.e, ̂̇r < 0),
the mapping from xtracker to xlogic is described by the following equations:

h = ĥint − ĥown,

τ = |r̂/̂̇r|,
ḣ1 = ̂̇

hown,

ḣ2 = ̂̇
hint,

sRA = clear of conflict.

(30)

The optimal action to take is π∗(xlogic). Once an RA has been issued, the RA is maintained for
the remainder of the encounter. If the aircraft are diverging in range, no RA is issued. Receiving
the appropriate action from the logic evaluation step, the dynamic model updates the state x, and
the process continues until the end of the encounter.

For the preliminary safety evaluation of the DP logic discussed in this report, 500,000 tra-
jectories were generated using the encounter model. The aircraft trajectories were rotated and
translated to create the geometry at CPA as given by the model. The impact of using the DP logic
was evaluated in the CASSATT simulation framework (Figure 23). As a baseline, the performance
of TCAS II version 7.1 was also evaluated for comparison. For the purposes of this study, the
intruder was equipped with a Mode S transponder but not equipped with a collision avoidance
system. Both own aircraft and the intruder reported altitude in 25-ft increments. The Mode S
address of the intruder was higher than that of own aircraft. For this preliminary evaluation, the
DP logic was calculated using a cost of alerting of 0.1. Analysis of the performance of the DP logic
in the CASSATT framework when using a different cost of alerting is beyond the scope of this
initial study.

In the calculation of the DP logic, conflict between the aircraft was defined as less than 100 ft
vertical separation at the point when horizontal separation has been lost. It is rare, however, for
the aircraft to lose all horizontal separation in the simulation framework of Figure 23. CASSATT
defines a conflict more generally as a near mid-air collision (NMAC), a loss of separation less than
500 ft horizontally and 100 ft vertically [4].

Instead of sampling the encounters directly from the distribution given by the encounter
model, encounters are sampled from an alternative distribution, called the proposal distribution,
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to increase the probability that an encounter results in an NMAC. This procedure is known as
importance sampling, as discussed in a different context earlier in Section 4. In addition to reducing
the computational time, importance sampling produces lower variance estimates of performance
metrics. The encounters generated using importance sampling are not equally likely to occur.
Instead, a weight w(i) is assigned to each encounter that indicates the likelihood with which it would
have been sampled from the original distribution of the model. The probabilities of Section 5.2 are
approximated using weighted encounters.

Table 6 lists the probabilities of each of the alerting system outcomes of Section 5.1 for both
the DP logic and TCAS. These estimates ignore the effect of altimetry bias. The remainder of this
section compares several metrics of Section 5.2 between the DP logic and TCAS.

TABLE 6

Probability of each alerting system outcome.

Outcome category DP TCAS

Correct Rejection 8.69 · 10−1 4.89 · 10−1

Correct Detection 2.88 · 10−3 2.93 · 10−3

False Alarm 1.28 · 10−1 5.08 · 10−1

Missed Detection 6.25 · 10−5 0.00 · 100

Induced Conflict 8.45 · 10−5 3.56 · 10−5

Late Alert 4.50 · 10−5 6.08 · 10−5

5.4.1 Probability of alert

The probability of alert can be approximated using importance sampling as follows:

Pr(A) ≈ 1
N

N∑
i=1

w(i)f(ω(i)), (31)

where N is the number of encounters, ω(i) represents the ith encounter, and f(ω) is a function that
takes as input an encounter and returns one if the alerting system alerted during the encounter
and zero otherwise. A high probability of alert is generally undesirable and may indicate that the
system may be alerting more often than necessary. The probability of alert can also be estimated
by summing the probabilities of correct detection, false alarm, induced conflict, and late alert as
given in Table 6.

The results of the simulation using 500,000 encounters show that the probability of alert
for TCAS is 51.1%, whereas the probability of alert for the DP logic is 13.1%. This situation
admits several possible explanations. As previously discussed, TCAS alerts frequently due to the
minimum vertical separation requirements that it tries to meet. Additionally, TCAS has a wider
spectrum of alerts that it can issue (Section 1.2). In addition to climb and descend RAs, it can
issue vertical speed limits, increase rate RAs, and sense reversals. Notwithstanding, TCAS does
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TABLE 7

Risk ratios with TCAS v. 7.1 and the DP logic.

Logic Risk Ratio Unresolved Risk Ratio Induced Risk Ratio

TCAS 5.54 · 10−2 2.89 · 10−2 2.64 · 10−2

DP 1.36 · 10−1 9.19 · 10−2 4.43 · 10−2

not issue RAs against intruders for which a large horizontal miss distance is projected. The DP
logic does not account for such circumstances and therefore, although it alerts less than TCAS, still
has the tendency to over-alert. By adding a miss distance filter similar to that which is included
in TCAS, the alert rate could be reduced further.

5.4.2 Probability of NMAC

Using importance sampling, the probability of an NMAC, given that the aircraft are involved
in an encounter, can be estimated by

Pr(NMAC) ≈ 1
N

N∑
i=1

w(i) Pr(NMAC | ω(i)), (32)

where Pr(NMAC | ω(i)) is the probability that the ith encounter resulted in an NMAC. The
probability that the ith encounter resulted in an NMAC is calculated by integrating the combined
altimeter error distribution of the aircraft over the range of errors that would cause the true vertical
separation to be less than 100 ft [79,83].

Without any collision avoidance system, Pr(NMAC) = 0.00311. This means that the sim-
ulation indicates that one in approximately 321 close encounters results in an NMAC when no
collision avoidance system is equipped. With TCAS, Pr(NMAC) is reduced to 0.000172. With the
DP logic, Pr(NMAC) = 0.000424. In either case, the risk of an NMAC is significantly reduced.
The probability of NMAC with the DP logic is approximately twice as large as the probability of
NMAC with the existing TCAS.

It is encouraging to observe that the probability of an NMAC using the DP logic is comparable
to that using TCAS. Decreasing the cost of alerting will decrease the probability of an NMAC with
the DP logic even further. Apart from this, there are still several fundamental ways in which the
DP logic can be substantially improved, including extending the motion model used to compute
the logic, accounting for the effects of sensor uncertainty, and expanding the number of alerts that
the DP logic can issue. These are discussed in Section 5.6. While the results summarized in this
report are indeed promising, they are still preliminary in nature, and further refinement of the DP
logic is expected to result in significant performance gains.
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Figure 24. Risk ratio convergence.

5.4.3 Risk Ratios

Section 5.2 defined the risk ratio as the ratio between the probability that a conflict would
occur with the alerting system and the probability that a conflict would occur without the alerting
system. A risk ratio of zero is indicative of an effective collision avoidance system, while a risk ratio
above one is indicative of an adverse system. If a conflict is defined as an NMAC, the risk ratio
for TCAS is 0.0554, while the risk ratio for the DP logic is 0.136. Table 7 lists the risk ratios for
TCAS and the DP logic as well as the unresolved and induced risk ratio components.

These estimates of risk ratio are sensitive to the number of samples (encounters) used to
calculate them. As more samples are used, the accuracy of the estimates increases. Figure 24 shows
the convergence of the risk ratio estimates as the number of encounters increases. Empirically, it
appears that the estimates have converged. This also serves to show that, with a high degree of
confidence, the risk ratio of TCAS is lower than that of the DP logic. Further research will reveal
the extent to which the DP logic can be improved.

5.4.4 Vertical Miss Distance

Recall that VMD is defined as the (nonnegative) vertical separation between the aircraft at
the point in the encounter when the horizontal miss distance is minimal. Figure 25 compares the
VMD using TCAS and VMD using the DP logic for all 500,000 weighted simulated encounters. The
figure consists of several regions. Points on the diagonal line represent encounters for which VMD
using TCAS and VMD using the DP logic are the same. Points that lie below the line correspond
to encounters for which the DP logic provides greater vertical separation than TCAS. Points that
lie above the line correspond to encounters for which TCAS provides greater vertical separation
than the DP logic. As the figure shows, most of the time DP and TCAS produce the same vertical
separation, which is because neither issues an alert. When at least one system alerts, TCAS is
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Figure 25. Comparison of VMD using TCAS v. 7.1 with VMD using the DP logic. The relative frequency of
the various cells is indicated using a logarithmic gray scale. Altimetry bias is zero.

more than twice as likely to provide greater vertical separation. Decreasing the cost of alerting will
result in a DP logic that will, on average, increase vertical separation.

5.5 EXAMPLE ENCOUNTERS

The previous sections assessed the overall performance of the logic in terms of a few comprehensive
metrics. It can be enlightening, however, to closely examine the logic on a small set of simulated
encounters. This section analyzes two simulated encounters: one in which the DP logic prevents an
NMAC that TCAS fails to prevent and, conversely, one in which TCAS prevents an NMAC that
the DP logic fails to prevent. Approximately 0.008% of encounters fall under the former category,
while approximately 0.011% fall under the latter category.

Figure 26 shows the horizontal and vertical profiles of a simulated encounter in which the DP
logic prevents an NMAC that the TCAS fails to prevent. Both the own aircraft and the intruder
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Figure 26. Simulated encounter in which the DP logic prevents an NMAC that TCAS fails to prevent.

are initially flying level. After 22 seconds, own aircraft begins to climb, which causes TCAS to
detect a threat and issue a Do Not Climb VSL three seconds later. However, even though the own
aircraft is compliant with the RA and the intruder remains level, an NMAC occurs. The DP logic,
on the other hand, prevents an NMAC by issuing a descend advisory 23 seconds in, which remains
in effect for the remainder of the encounter.

Analysis of other encounters of this type suggests other reasons why the DP logic performs
better than TCAS in select encounters:

• TCAS issues corrective RAs later than is necessary in preventing an NMAC, while the DP
logic alerts earlier;

• TCAS, being strongly biased against altitude-crossing RAs, issues non-altitude-crossing RAs
that result in NMACs, while the DP logic makes no such distinction; and

• TCAS either fails to alert or reverses the sense of an RA but, nonetheless, the encounter
results in an NMAC.

Figure 27 shows another simulated encounter where TCAS prevents an NMAC but the DP
logic fails. The intruder climbs at approximately 1800 ft/min for 27 seconds. Twenty-one seconds
into the encounter, while the intruder is still climbing, the DP logic advises own aircraft to descend
1500 ft/min. This is because the expected cost of climbing or remaining level is greater than the
expected cost of descending. After the five-second pilot delay, own aircraft begins descending and
continues to descend for the remainder of the encounter. An NMAC occurs, however, because the
intruder begins to level off as own aircraft is descending.
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Figure 27. Simulated encounter in which TCAS prevents an NMAC that the DP logic fails to prevent.

This encounter evolved into an NMAC because, although the alert to descend 1500 ft/min
seemed reasonable when the intruder was climbing, this alert was inappropriate when the intruder
began leveling off. Similar to the DP logic, TCAS issues an altitude-crossing descend RA, which
is then changed to a non-altitude-crossing descend RA. However, as the encounter progresses, the
RA is strengthened to an increase descent RA, allowing the aircraft to cross safely. Currently no
provisions have been made in the DP logic to change the RA when the evolution of the encounter
requires it. Maintaining the vertical rate that the DP logic indicates for the remainder of the
encounter could lead to unsafe encounters. Extending the DP logic to include strengthening and
reversals is discussed in Section 7.3.

5.6 DISCUSSION

This section showed that the DP logic performed relatively well compared to the existing TCAS
logic. However, the current implementation of the DP logic was at a disadvantage against the
TCAS logic in the three-dimensional simulations for several reasons:

1. Motion model: The DP logic is calculated using a model that only captures motion in the
vertical plane. The motion in the horizontal plane is important to model because it affects
the time to potential conflict. Expanding the vertical motion model to capture horizontal
dynamics is discussed in Section 7.1.

2. Sensor uncertainty: The DP logic made decisions assuming that the tracked sensor mea-
surements were correct. However, due to noise in the sensor measurements, making decisions
based on this assumption can lead to unnecessary or unsuccessful alerts. The sensor error
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model should be used to estimate the state uncertainty, which can be used by the QMDP
value method discussed in Section 2.4.

3. Action space: TCAS allows RAs to be strengthened and reversed, whereas the DP logic
must commit to a particular RA once it is issued for the remainder of the encounter. Therefore
it is not surprising that TCAS resolves more NMACs than the DP logic. Section 7.3 discusses
how additional RAs might be included in the DP logic.

All three of these issues will be addressed in further work and should result in a significant improve-
ment in performance. Further work will also investigate other operating points in the CASSATT
simulation for the DP logic.
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6. ALTERNATIVE APPROACHES

Kuchar and Yang provide a thorough survey of conflict detection and resolution methods [33].
This section discusses some of the key approaches they identified as well as other approaches
introduced since their survey. A variety of other algorithms have been suggested in the literature,
but the majority are variations of one of the general approaches discussed in this section—or are
based on the dynamic programming or conflict probability estimation approaches discussed earlier.

6.1 POTENTIAL FIELD METHODS

Potential fields have been a very popular method for collision avoidance in robotics since they
were introduced over thirty years ago [84–86] and have been applied to collision avoidance for
aircraft [87,88]. The typical potential field works by exerting virtual forces on the aircraft, usually
an attractive one from the goal or waypoint and repelling ones from nearby traffic. The approach
is very simple to describe and easy to implement, but it has some fundamental problems [89].

One problem with potential field methods is that it is a greedy strategy that is subject to
local minima, which can lead to the aircraft getting “stuck.” For example, the sum of the repulsive
forces from the traffic can cancel the attractive force from the goal, resulting in zero net potential.
The problems with local minima have led to the development of heuristics on top of the potential
fields to escape such traps and eventually to the construction of navigation functions, which are
potential fields with unique minima. These navigation functions are global and are equivalent to
value functions [90].

Another issue with potential fields is that they do not take into account the probabilistic
dynamics of the intruders. The potential fields are typically defined in two or three spatial dimen-
sions without taking into consideration the aircraft dynamics. If the aircraft are moving at different
speeds, large virtual forces are needed to repel the traffic. If the forces are too small, a collision
can result with a fast intruder. If the forces are too large, slower aircraft will deviate unnecessarily
from their intended course. These dynamic problems are often overlooked for slow-moving mobile
robots, but they are more significant in aircraft.

Perhaps the most significant problem with potential fields in the context of last-minute col-
lision avoidance is that they do not account for uncertainty in control or observation. Because of
the short time frame and the catastrophic nature of collision, decisions must be robust to noise in
the sensor measurements and unexpected deviation from the projected flight course.

6.2 RAPIDLY EXPANDING RANDOM TREES

Rapidly expanding random trees (RRTs) were originally developed in the context of robot naviga-
tion [91]. RRTs explore the configuration space of the robot by generating random samples and
connecting them to one or more trees rooted at the origin and at the destination. RRTs exhibit
what is known as Voronoi-bias, which allows them to sample preferentially in previously unexplored
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areas, and so they tend to cover the space more quickly than a random walk. Typically, RRTs find
paths from the start to the goal long before the space is densely sampled.

RRTs have been remarkably successful in practice. They have become the solution of choice
for high-dimensional robot motion planning problems and for kino-dynamic problems that involve
not just positions but velocities [92]. The MIT autonomous ground vehicle that completed the
DARPA Urban Challenge used RRTs to successfully drive in lanes, execute three-point turns, park,
and maneuver with other traffic and obstacles [93]. RRTs have also been used for obstacle avoidance
for micro air vehicles [94].

To balance their many desirable properties, it is important to note that RRTs make no
guarantee of optimality of the path they find. In practice, the paths found by RRTs can be quite
poor due the fact that they are constructed by joining together random samples. RRT-based
motion planners typically go through a second phase of smoothing the resulting path to get one
that is acceptable, but generally far from optimal [95]. The other limitation of RRTs is that they
do not consider uncertainty, which is critical to airborne collision avoidance. There is some current
research aimed at extending RRTs for solving MDPs and situations where the environment model
is uncertain, but the results are preliminary [96].

6.3 GEOMETRIC OPTIMIZATION

Bilimoria introduced a lateral conflict resolution algorithm based on geometric optimization [28].
Given position and velocity information, the algorithm uses straight-line projection to determine
whether the own aircraft will penetrate a circular protected zone of an intruder. If a conflict is
predicted to occur, the algorithm will compute the minimal change in velocity required to avoid the
protected area of an intruder. The assumption of constant velocity allows the algorithm to quickly
compute an analytical solution. KB3D is a generalization of this algorithm to three-dimensional
space where cylinders define the protected zones of intruders [29]. The algorithm outputs the
minimal change in airspeed, vertical rate, or heading required to prevent the aircraft from entering
a protected zone.

These geometric optimization approaches typically lend themselves to fast, analytical solu-
tions. Because they recommend the minimal velocity change, the projected flight path (assuming
constant velocity) will always barely miss the edge of the protected zone. If this approach is to
be used for collision avoidance with real aircraft, the protected zone would need to be enlarged
to make the system robust to flight path variability. Future work can investigate the SOC curve
traced when varying the size of the protected zone. It would be interesting to compare how close
a geometric optimization curve approaches those in Section 5.

6.4 POLICY SEARCH

One approach is to choose a policy representation whose behavior is defined by a vector of parame-
ters θ. The choice of parameters requires insight into the structure of the problem and engineering
judgment. The choice of policy representation is flexible; for example, one could use pseudocode
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resembling the current version of TCAS or a neural network. Local or global search methods can
search the space of parameters for an optimal θ that minimizes J(θ), which is the expected cost
of following the policy determined by θ assuming some distribution over initial states. One advan-
tage of policy search is that the state space does not require discretization, therefore allowing the
approach to better scale to higher dimensional problems.

A local search method known as policy gradient starts with some initial parameter vector
θ0 and estimates the gradient ∇θJ(θ0) using sampling. The next parameter vector θ1 is chosen
by taking a small step in the direction of the gradient, and the process continues until reaching a
local minimum [97]. Policy gradient has been applied to aircraft collision avoidance [52, 73] and
autonomous helicopter flight [98], among other domains.

The gradient descent approach will not necessarily find the globally optimal parameter vector
due to local minima. Various methods have been suggested to make local search more robust to
local minima, such as tabu search [99] and simulated annealing [100]. Another approach is to
use genetic algorithms or some other evolutionary search method to find a policy that minimizes
J(θ) [101–103]. Durand, Alliot, and Médioni demonstrated how genetic algorithms can be used to
find a neural network controller to resolve lateral conflicts between aircraft [104].

The computation involved in policy search can be done offline by powerful computers, as
opposed to online by the collision avoidance system during flight. The “fitness evaluation” stage
of evolutionary algorithms can be parallelized, and local search can be conducted from a large
collection of initial points in the parameter space in parallel. However, adequately estimating J(θ)
or its gradient requires many samples, even when using importance sampling, which can make the
pace of the search very slow. Finding optimal solutions may be faster using a dynamic programming
formulation (Section 3) because it explicitly leverages models of aircraft dynamics and sensor error.

6.5 NONSTATIONARY APPROXIMATE POLICY ITERATION

Another approach is to search a policy in stages, working backwards from the terminal states
(i.e., when there is a collision or there is negligible probability of conflict occurring). The learning
problem at each stage is treated as a supervised multiclass classification problem, which can leverage
any classifier suited for the domain. This kind of approach, known as nonstationary approximate
policy iteration [105] or policy search by dynamic programming [106], has been applied by Kaelbing
and Lozano-Perez to a hypothetical collision avoidance scenario similar to the one explored in this
report [52]. The policy generated using this approach is called nonstationary because it is time
dependent. Instead of being defined by a simple mapping π from states to actions, the nonstationary
policies are defined by a sequence of mappings (π1, . . . , πk) from states to actions, where πi dictates
the action to execute i steps before termination.

The algorithm suggested by Kaelbling and Lozano-Perez begins by simulating a large collec-
tion of trajectories through the state space until they reach a terminal state. All of the states from
the trajectories are partitioned into a collection of sets, D0, . . . , Dk, where Di contains all the states
i steps from termination.
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The following procedure is used to define π1. For each state in D1, the expected cost for
executing each action is estimated using sampling (Appendix D). Each state is paired with the
action that resulted in the lowest expected cost. This set of state-action pairs serves as a training
set for a multiclass classification algorithm [61,62], resulting in π1 that maps states to actions.

Once πi is known, πi+1 may be computed as follows. For each state in Di+1, the expected
cost-to-go for executing each action is estimated by sampling the next state and then following the
nonstationary policy defined by (π1, . . . , πi). Each state is paired with the action that resulted in
the lowest expected cost-to-go. This set of state-action pairs serves as a training set for a multiclass
classification algorithm, resulting in πi+1 that maps states to actions.

As with policy search, this approach does not attempt to represent the cost-to-go function,
which may allow it to scale to more complex problems. The policy can be compactly represented
if the series of classifiers π1, . . . , πk are defined by a series of relatively short parameter vectors
θ1, . . . ,θk. The success of this algorithm depends upon the choice of classifier, sampling scheme,
and the number of training examples.

6.6 DISCUSSION

Perhaps the primary strength of approaches based on dynamic programming and probabilistic con-
flict estimates is that they directly account for uncertainty in the future path of the aircraft. Of the
approaches discussed in this section, only the policy search and nonstationary approximate policy
iteration methods leverage models of uncertainty. For last-minute collision avoidance, accounting
for sensor error and dynamic uncertainty is critically important. Many of the algorithms suggested
in the literature that are based on the other approaches are intended to assist in air traffic control
separation, where accounting for these uncertainties is less important because of the larger time
scale involved.
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7. FURTHER RESEARCH

There are several ways in which the simple collision avoidance model needs to be extended
to handle realistic encounter scenarios. This section outlines how the existing model can be ex-
tended and discusses potential computational issues that may arise and how to address them. The
main priorities for further research in the short term include extending the model to three spatial
dimensions and equipped intruders, investigating model robustness, and exploring different policy
representations and how they may impact certification.

7.1 THREE-DIMENSIONAL DYNAMICS

One way to extend the hypothetical collision avoidance model (Section 1.3) into three dimensions
is to dispense of τ (time to horizontal conflict) and add the following variables:

• horizontal range to intruder r,

• bearing of intruder χ,

• own ground speed v1,

• intruder ground speed v2,

• relative heading of intruder β,

• own turn rate ψ̇1, and

• intruder turn rate ψ̇2.

A point in the state space would then be an 11-dimensional tuple

(h, r, χ, ḣ1, ḣ2, v1, v2, β, ψ̇1, ψ̇2, sRA),

which uniquely specifies (in a convenient coordinate system) the velocity vectors of both aircraft,
the relative position of the intruder, and the RA response state. A probabilistic model can be used
to specify the dynamics. Unfortunately, applying the dynamic programming approach suggested
in Section 3 might be impractical because of the dimensionality of the state space. A grid with 21
edges per dimension would result in 3.5 · 1014 discrete states.

One way to reduce the dimensionality of the state space is to decompose the problem into
motion along the horizontal plane and motion along the vertical plane. The dynamics in the
horizontal plane can be modeled as an uncontrolled Markov process over the variables r, χ, v1, v2,
β, ψ̇1, and ψ̇2. The dynamics in the vertical plane would be modeled as discussed in Section 1.3
over the variables h, τ , ḣ1, ḣ2, and sRA. Transforming the 11-dimensional problem into these two
problems of smaller dimension requires that the vertical rates and vertical separation be independent
of the behavior in the horizontal plane. Prior TCAS studies have made this assumption [15,76].
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Figure 28. Estimation of time to horizontal conflict.

A distribution over τ can be inferred from the uncontrolled Markov process over xhoriz =
(r, χ, v1, v2, β, ψ̇1, ψ̇2). One way to estimate this distribution is to sample a large collection of
trajectories starting from the current state (Figure 28). The variable τ may be discretized to one-
second intervals up to the time horizon tmax: [0, 1), [1, 2), . . . , [tmax,∞). A histogram over these bins
can be inferred from the samples. As with conflict probability estimation (Section 4), importance
sampling techniques can result in improved estimates of the distribution Pr(τ | xhoriz).

Another way to estimate Pr(τ | xhoriz) is to use dynamic programming, which may be done
offline for the entire discrete state space. Appendix G provides details of an algorithm. During
execution, computing Pr(τ | xhoriz) for an arbitrary xhoriz would involve interpolating (Appendix C)
distributions at nearby states. If the dimensionality of xhoriz proves to be computationally bur-
densome, it may be worth assuming constant ground speed and turn rate to bring the number of
dimensions down to three from seven. Of course, dynamic programming would then need to be run
online.

Once Pr(τ | xhoriz) is known, the QMDP value method (Section 2.4) can be used to choose
the best action

arg min
a

∑
τ

Pr(τ | xhoriz)J∗((h, τ, ḣ1, ḣ2, sRA), a), (33)

where
J∗(s, a) = c(s, a) +

∑
s′

Pr(s′ | s, a)J∗(s′). (34)

When τ ≥ tmax, J∗(s) is set to zero.

7.2 NONDETERMINISTIC PILOT RESPONSE

Kuchar and Drumm analyzed TCAS monitoring data in the Boston area from June 2005 to January
2006, and they observed the following:
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Figure 29. Transition model for sRA where the response delay is given by a geometric distribution.

Examination of the data . . . indicates that only 13% of pilot responses met the assump-
tion used by TCAS: pilot responses within 5 seconds and achieving a 1500 ft/min vertical
rate. In 63% of the cases, the pilots maneuvered in the proper direction but were not as
aggressive or prompt as TCAS assumed. Pilots maneuvered in the opposite direction
to the RA in 24% of the cases. Some of these opposite responses are believed to be due
to visual acquisition of the intruder aircraft and the pilot’s decision that following the
RA was not necessary. [4]

In the hypothetical collision avoidance problem, the pilot of the own aircraft always responds
deterministically to RAs, which reduces the amount of uncertainty the collision avoidance system
must account for when deciding when to issue an RA. If the model allows for late or opposite
responses, then the optimal logic will likely issue alerts earlier.

The transition probabilities for the sRA variable would need to be altered to allow for nonde-
terministic responses. For example, instead of transitioning deterministically from clear of conflict
to climb in 4 s when issuing a climb RA, the model might allow a transition to climb in 1 s or climb
in 10 s or even never climb with some probability, for example.

Alternatively, the transition probabilities for the sRAvariable can be as shown in Figure 29.
Once a climb or descend advisory is issued, sRA will go into a “holding state” (either will climb
or will descend) from which it will transition to climbing or descending with some probability p at
each time step. The distribution over the time spent in the holding state is given by a geometric
distribution with mean 1/p. The mean total delay, which includes the step from clear of conflict
to one of the holding states, is 1 + 1/p. The probability p can be chosen to provide the desired
average delay. For example, p = 0.25 provides a 5 s delay on average. One helpful byproduct of this
approach is that it reduces the size of the state space since explicit states are no longer required
for delay in 4 s, . . . , delay in 1 s (as in Appendix A).

7.3 STRENGTHENING AND REVERSAL ADVISORIES

The hypothetical collision avoidance problem in this report does not allow the system to change
the RA once it has been issued. However, it is critical that TCAS be able to either strengthen or
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reverse RAs as the encounter develops because pilots often do not follow their RAs exactly or even
at all. According to Kuchar and Drumm [4], the mid-air collision of a Russian Tu-154 and a DHL
B-757 over Überlingen in 2002 may have been averted if TCAS had properly reversed the RA it
had issued to the DHL aircraft.

The current version of TCAS incorporates reversal logic. According to TCAS monitoring
data obtained from seven sensors since 2008, approximately 1% of RA enounters involve reversals.
The logic in TCAS responsible for RA changes is rather complex in order to address issues iden-
tified in simulation and during operational use. Modeling collision avoidance as an optimization
problem may result in logic that is more robust to unexpected events without requiring substantial
engineering effort and the development of complex logic.

The MDP framework can be extended to allow strengthening and reversal. The behavior
of the sRA variable (Figure A-1) would require adjustment and the number of actions available
from non-clear-of-conflict states would need to be expanded. The cost function may also need
adjustment, depending on whether it is desirable to penalize strengthening or reversing RAs.

The approach that involves making decisions based on the probability of conflict (Section 4)
can also be extended to allow strengthening and reversal. If it is determined that a different RA
provides a lower probability of conflict than the current RA, then the system would change the RA.
Experiments would be able to reveal how well this approach compares to the MDP framework.

7.4 EQUIPPED INTRUDERS

This report has only considered intruders that are not equipped with a collision avoidance system.
However, a future version of TCAS will have to interact with intruders equipped with the future and
legacy versions of TCAS. Separate sublogics for each equipage category can be optimized according
to different dynamic models.

Applying dynamic programming to problems with an intruder with the current version of
TCAS may involve adding additional information to the state representation and modifying the
transition model. However, for an intruder with this future collision avoidance system, the logic
needs to be jointly optimized on both aircraft.

One way to jointly optimize the logic on both aircraft is to define the state variables relative
to the aircraft with the lower Mode S address. (The current version of TCAS uses Mode S address
to break ties in coordinated encounters.) The action space would be the set of possible pairs
of resolution advisories for both aircraft: {(no alert, no alert), (climb, descend), . . .}. The dynamic
model would take into account the RAs of both aircraft. The cost function would be similar to
before, except that the cost imposed for alerting may depend on whether one or both aircraft alert.
It may be desirable to enforce the constraint that both aircraft alert simultaneously. The optimal
joint policy can be found using dynamic programming.

When an aircraft equipped with this future system discovers an intruder with the same system,
it will estimate the state relative to the aircraft with the lower Mode S address. It will then apply
the policy computed using dynamic programming to determine the best pair (a1, a2). If the own
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aircraft has the lower Mode S address, it will execute action a1; otherwise, it will execute action
a2. Ideally, both aircraft will have estimated the same exact state, agreed upon the same action
pair, and executed their respective actions. However, it is possible that sensor noise results in
the two aircraft believing they are in different states, which may result in disagreement over the
action pairing. One way to mitigate this problem is to have the aircraft with the lower Mode S
address dictate the action of both aircraft over the data link. The current version of TCAS uses a
similar coordination scheme, but further research would be required to assess potential issues and
vulnerabilities of such an approach.

The current version of TCAS provides a much lower risk ratio when both aircraft are equipped
with TCAS [78]. It would be interesting to determine through Monte Carlo simulation how much
better a jointly optimal logic performs when both aircraft follow their RA. It would also be inter-
esting to determine how performance degrades when intruders do not follow their RA.

7.5 MODEL ROBUSTNESS ANALYSIS

The methods discussed in this report assume that the internal model of the system dynamics and
sensor performance is correct. Before deploying a collision avoidance system that is optimized for
a particular model, it is important to assess the risk of an inaccurate model. Monte Carlo analysis
across a spectrum of gradually different models can reveal how inaccurate the internal model must
be before performance is significantly degraded.

7.6 NON-GAUSSIAN DYNAMICS

The dynamic model used in this report assumes that accelerations are chosen according to a Gaus-
sian distribution. However, the logic is evaluated using an encounter model with much more
sophisticated dynamics represented by a dynamic Bayesian network derived from radar data. It
may be worth experimenting with how much the policy improves if a more sophisticated dynamic
model is used for planning. If there is little to gain, then it may be wise to continue using the
simpler Gaussian model. However, if there is much to gain, then it could be worth adopting a more
complex model.

7.7 ADDITIONAL RESOLUTION ADVISORIES

TCAS III, which is no longer under development and has not been deployed, was intended as a
more capable version of TCAS II that incorporated horizontal RAs such as “turn left.” Experiments
in the late 1980s indicated that horizontal RAs were expected to provide a modest gain in safety
while significantly lowering the alert rate [107]. A more recent study showed that horizontal RAs
can make TCAS more efficient in some situations, such as crossing situations that can result in
reversal RAs [108]. Pilots generally view the concept of horizontal RAs favorably, although the
views of controllers tend to be less favorable [108].
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Introducing horizontal RAs to the MDP formulation would require expanding the model into
three spatial dimensions. An MDP would be required to model the horizontal dynamics instead
of the uncontrolled Markov process discussed in Section 7.1. The action space would need to be
expanded to include horizontal RAs. The computational impact may be significant, but simulation
using an encounter model could quantify the anticipated benefit of horizontal RAs.

7.8 LEVERAGING INTENT INFORMATION

Automatic Dependent Surveillance-Broadcast (ADS-B) enables aircraft to broadcast their position
and other relevant information to the ground and nearby traffic. It is expected that a future version
of TCAS will leverage this technology (at least to some degree) to improve collision avoidance.
Because ADS-B can broadcast intent information, it may be possible to reduce the uncertainty
in the future state of the aircraft, thereby lowering the false alert rate [109]. Since pilots do not
always follow their intended flight plan, the dynamic model used for planning must capture intent
deviation [110]. Experiments can confirm whether leveraging intent information significantly lowers
the rate of unnecessary alerts.

7.9 MULTIPLE INTRUDERS

As to be expected, the multi-threat logic is perhaps one of the most complex components of TCAS.
This part of the logic has not been the focus of the same rigorous testing as the single-threat logic,
due in part to the rarity of multi-threat events. It was not until recently that an encounter model
based on operational data was developed for multi-threat situations [111]. Preliminary results
indicate that the current version of TCAS performs reasonably well against multiple intruders.

Expanding the MDP model to capture the behavior of multiple intruders would significantly
increase the dimensionality of the state space. The fitted value iteration approach with grid-based
interpolation of the value function (Section 3) is unlikely to scale well to multiple intruders unless
some approximations are made. Methods that use conflict probability estimates (Section 4) or other
online methods will likely scale better in multi-threat situations. Although multi-threat situations
contribute little to the overall risk associated with TCAS because of their rarity, it is important to
ensure that any future logic be robust to encounters with multiple intruders.

7.10 LOGIC REPRESENTATION

This report has focused on how to compute the optimal policy, but it has not dealt with the issue
of how the optimal policy will be used or represented. One option is to not use the optimal policy
directly as the future TCAS logic, but instead use the optimal policy as a tool to aid engineers
designing the new logic. The optimal policy can help justify parameter settings, such as DMOD
and ALIM. Human-engineered logic and the optimal logic can be compared in simulation. If the
human-engineered logic performs significantly worse in some situations compared to the optimal
logic, then those situations can be inspected and the logic revised to better match the optimal logic.
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The output of the effort would be human-engineered pseudocode that can be certified like previous
versions of TCAS and then implemented by manufacturers.

One advantage of using human-designed pseudocode to represent the logic is that there is
already experience and familiarity with certifying pseudocode with prior versions of TCAS. Al-
though the pseudocode of the current version of TCAS is remarkably complex, an engineer could
read through the pseudocode and gain some understanding of how the logic works. Disadvantages
of using the optimal policy merely as a design aid include sacrificing performance and extending
the development process.

An alternative is to use the optimal policy directly. For example, the optimal cost-to-go
function could be represented as a table of values, as discussed in Section 3, and the logic would
involve performing the necessary calculations on these values to select the action with the lowest
expected cost. The certification process would require certifying the table and the limited amount
of pseudocode defining the required calculations. Instead of having the logic specified entirely in
pseudocode, this approach would shift most of the complexity of the logic into a large numerical
table. The certification of the table and accompanying pseudocode would be similar to the cer-
tification process for prior versions of TCAS. The logic would need to be rigorously evaluated on
millions of encounters in simulation to ensure the logic is safe and meets operational requirements.

There are some advantages of a tabular representation over the pseudocode representation of
prior TCAS logics. For example, the table can be easily updated as the airspace changes (which
is anticipated over the next 20 years) without having to revise implementations of pseudocode.
A tabular representation would also reduce the amount of effort required by manufacturers to
implement the logic and validate that their implementations meet the logic specification.

There are several alternatives to a tabular representation of the cost-to-go function. One
alternative is to use regression to approximate the cost-to-go function using a parametric function.
This can be done using either an online or offline dynamic programming solution method. Another
alternative is to dispense with representing the cost-to-go function and switch to representing the
policy directly using a classifier trained on a large collection of samples [61, 62]. A decision tree
would be one way to represent the classifier [112].

Depending on the representation, the decision-making process of the logic may not be entirely
transparent. Although a decision tree can be easily inspected and perhaps understood, a table of
values would not provide much insight into how the system made its decision. However, the
specification of how the representation was created would provide an understanding of the rationale
of the logic. Additionally, studying the policy plots (Section 3.4) can provide some insight into the
behavior of the logic. Because it is important that the behavior of the logic be understood as well
as possible due to its safety-critical nature, future research will need to further investigate ways of
visualizing and understanding the behavior of the system.
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8. CONCLUSIONS

As the airspace evolves with the introduction of new air traffic control procedures and surveil-
lance systems, it is likely that the TCAS II threat detection and resolution logic will require modi-
fication to meet safety and operational requirements. Due to the complexity of the logic, modifying
the logic may require significant engineering effort.

This report suggests a new approach to TCAS logic development where the engineering effort
is focused on developing models, allowing computers to optimize the logic according to agreed-upon
performance metrics. Because models of sensor characteristics, pilot response behavior, and aircraft
dynamics can be constructed from operational data, they should be straightforward to justify and
vet within the safety community. The optimization of the logic according to these models would be
done using principled techniques that are well established in theory and practice over the past 50
years. The performance metrics are based on quantities that have long been used by the aviation
safety community.

The objective of this report was to connect this concept of TCAS logic optimization to the
existing literature on model-based optimization, not to develop a particular conflict resolution al-
gorithm. Problems involving sequential decision making in a dynamic environments are typically
modeled by Markov decision processes, where the state at the next decision point depends proba-
bilistically on the current state and the chosen action. Assuming some objective measure of cost,
the best action from the current state is the one that minimizes the expected future cost. Comput-
ing the optimal action from all possible states requires a process known as dynamic programming,
which has been used for a wide variety of problems in computer science.

To illustrate some of the key concepts of how dynamic programming might be applied to
TCAS logic optimization, this report used a simple encounter model and evaluated it in simulation.
Because the model is defined by continuous variables, it is necessary to use some approximation
methods. This report explored interpolation-based methods and evaluated the resulting logic using
various performance metrics.

This report identified some of the issues with applying a dynamic programming approach.
One issue is the scalability of existing solution methods to higher dimensions. Adding additional
dimensions to the grid-based representation used in this report results in an exponential increase
in memory and computational requirements. As discussed in this report, there are several methods
worth exploring that may address these issues.

One approach that may scale well to higher dimensions involves using conflict probability
estimates to decide when to issue resolution advisories, as has been suggested by others. Although
this approach will not result in the optimal solution, it may approximate the optimal logic well.
One of the challenges of this approach is estimating the probability of a rare event, but this report
discussed a variety of techniques for estimating probability of conflict that are more accurate than
direct Monte Carlo sampling.

Besides methods based on dynamic programming and conflict probability estimates, several
other approaches have been suggested in the literature. This report discussed some of these meth-

73



ods, highlighting their strengths and weaknesses. One of the primary strengths of the dynamic
programming approach over the other methods is that it directly leverages models of sensor er-
ror and aircraft behavior to find the optimal logic. Future simulation studies can determine how
well these alternative methods perform compared to the optimal policy found through dynamic
programming.

Experiments using the simple encounter model indicate that dynamic programming is a
promising approach. However, further work will be required to extend the approach to three
spatial dimensions. This report outlined methods for handling three spatial dimensions while keep-
ing the memory and computational requirements tractable. Although computational requirements
could limit the success of applying dynamic programming to TCAS logic development, this report
has suggested ways to help manage the requirements for memory and computation.

This work has focused primarily on the computational aspect of optimizing collision avoid-
ance logic, but there are other issues, such as certification, that require further study. If this new
approach to developing logic is simply used as an aid to engineers who are developing or revising
collision avoidance pseudocode, then the use of these methods would have little impact on the certi-
fication process. However, if the logic produced by dynamic programming or some other automated
process is to be used directly in a future version of TCAS, then the certification process may be
somewhat different. The core of the certification process will be the same, involving rigorous simu-
lation studies and flight tests to prove safety and demonstrate operational acceptability. However,
the vetting of the logic itself will involve more than just studying the logic that will be deployed on
the system. Depending on the representation of the logic, it may not be directly comprehensible
by an engineer. Therefore, confidence would have to be established in the safety community that
the methods used to generate the logic are sound. This report represents a first step in justifying
an automated approach for generating optimized TCAS logic.
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APPENDIX A
HYPOTHETICAL COLLISION AVOIDANCE DYNAMICS

Section 1.3 introduced a hypothetical collision avoidance problem that was used as an ex-
ample to demonstrate the logic discussed in this report. This appendix provides a mathematical
specification of the underlying model. The model uses a state representation to encode all the
properties of the system that are of interest at any given time. The state at time t is a vector

x(t) =


h(t)
τ(t)
ḣ1(t)
ḣ2(t)
sRA(t)

 , (A-1)

where h is the altitude of the intruder relative to own, τ is the time to closest approach, ḣ1 is
own vertical rate, and ḣ2 is the intruder vertical rate. The magnitudes of ḣ1 and ḣ2 are limited to
L = 2500 ft/min. The sRA variable keeps track of the RA that has been issued so that the proper
0.25-g acceleration can be applied after a five-second delay. As Figure A-1 illustrates, 11 discrete
states are required.

The system dynamics are governed by the following hybrid, discrete-time Markov model:

x(t+ ∆t) = f(x(t),w(t), a(t)), (A-2)

where
w(t) =

[
w1(t)
w2(t)

]
(A-3)

is a random variable representing the noise in the vertical rates of the aircraft, and a(t) is the action
performed at time t. The action can take on three possible values: no alert, issue descend, and issue
climb. Once an action other than no alert is taken, subsequent values of a have no effect upon
the evolution of the system. Hence, the model allows for at most one resolution advisory which, if
issued, remains in effect for the remainder of the scenario.

climb in 4 s climb in 3 s climb in 2 s climb in 1 s climb

clear of conflict

descend in 4 s descend in 3 s descend in 2 s descend in 1 s descend

issu
e

clim
b

issuedescend

no alert

Figure A-1. The variable sRA tracks which RA has been issued and the delay.
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The noise is a zero-mean white Gaussian process with time-invariant covariance R, that is,
w(t) ∼ N (0, R). It is assumed that the noise in the vertical rates of the own aircraft and intruder,
w1(t) and w2(t), respectively, are uncorrelated and that they both have a standard deviation of
1 ft/s2. The process noise enables the model to capture the stochastic nature of aircraft behavior.

The equations of motion can be written as

h(t+ ∆t) = h(t) + (ḣ2(t)− ḣ1(t))∆t+ 1
2(ḧ2(t)− ḧ1(t))∆t2, (A-4)

τ(t+ ∆t) = τ(t)−∆t, (A-5)

ḣ1(t+ ∆t) = φL
(
ḣ1(t) + ḧ1(t)∆t

)
, (A-6)

ḣ2(t+ ∆t) = φL
(
ḣ2(t) + ḧ2(t)∆t

)
, (A-7)

where the saturation function φL(y) = max(−L,min(L, y)) ensures that the magnitude of either
vertical rate never exceeds the model parameter L. The time step ∆t is set to one second. The
acceleration noise values w1 and w2 are sampled from N (0, R) every second. The applied vertical
accelerations are given by

ḧ1(t) =


−0.25 g if sRA(t) = descend and ḣ1(t) > −1500 ft/min,
+0.25 g if sRA(t) = climb and ḣ1(t) < +1500 ft/min,
w1(t) otherwise,

(A-8)

ḧ2(t) = w2(t). (A-9)
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APPENDIX B
ANALYTIC APPROXIMATION

Section 4.1 discusses an analytic approximation to the probability of conflict for the model of
Appendix A. This appendix is an overview of the linear-Gaussian approximation to the dynamics
that makes this analytic approximation possible.

The system dynamics are governed by the hybrid, discrete-time Markov model of Equation A-
2, repeated here for convenience:

x(t+ ∆t) = f(x(t),w(t), a(t)), (B-1)

where
w(t) =

[
w1(t)
w2(t)

]
(B-2)

is a random variable representing the noise in the vertical rates of the two aircraft, and a(t) is the
action performed at time t. The dynamics can be approximated by the Gaussian system

x(t+ ∆t) = A(∆t)x(t) +G(∆t,x(t))w(t) +B(∆t)u(t,x(t)), (B-3)

where
u(t,x(t)) =

[
ḧ1cmd(t)
−∆t

]
(B-4)

is the control vector representing the control in the own vertical rate, ḧ1cmd , and the rate at which
the time to closest approach τ decreases each time step, −∆t. When the pilot is responding to an
RA (after a five-second delay), ḧ1cmd is a 0.25-g acceleration in the RA direction; otherwise, ḧ1cmd

is zero. Hence, ḧ1cmd is a deterministic function of x(t).

Outside of an RA response, the system dynamics (excluding sRA) can be written
h(t+ ∆t)
τ(t+ ∆t)
ḣ1(t+ ∆t)
ḣ2(t+ ∆t)

 =


1 0 −∆t ∆t
0 1 0 0
0 0 1 0
0 0 0 1



h(t)
τ(t)
ḣ1(t)
ḣ2(t)

+


−1

2∆t2 1
2∆t2

0 0
∆t 0
0 ∆t


[
w1(t)
w2(t)

]

+


−1

2∆t2 0
0 1

∆t 0
0 0


[
ḧ1cmd(t)
−∆t

]
.

(B-5)

During the RA response, there is no contribution from the noise w1(t). Therefore,

G(∆t,x(t)) =


0 1

2∆t2
0 0
0 0
0 ∆t

 (B-6)
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during RA response. Regardless of whether the pilot is responding to an RA, the mean of x(t+∆t)
is

E[x(t+ ∆t)] = A(∆t)E[x(t)] +B(∆t)E[u(t,x(t))], (B-7)

and the covariance of x(t+ ∆t) is

cov[x(t+ ∆t)] = A(∆t)cov[x(t)]A(∆t)T +G(∆t,x(t))RG(∆t,x(t))T . (B-8)

Both of these recursions depend upon the value of the random variable x(t). To obtain analytic
approximations µ̂ and P̂ , the approximate mean and covariance of x(t), the approximate mean µ̂(t)
is substituted for the true random variable x(t), yielding recursions

µ̂(t+ ∆t) = A(∆t)µ̂(t) +B(∆t)u(t, µ̂(t)), (B-9)
P̂ (t+ ∆t) = A(∆t)P̂ (t)A(∆t)T +G(∆t, µ̂(t))RG(∆t, µ̂(t))T . (B-10)

Hence, the system described by Equations B-9 and B-10 is a linear-Gaussian system that switches
between two modes, no-RA execution mode and RA execution mode. The only difference between
the two is a change in the matrix G.

This analytic solution is only an approximation. The actual dynamics are not linear-Gaussian
for two reasons. First, the vertical rate saturates at ±2500 ft/min, causing the random accelerations
to affect the state in a generally nonlinear fashion. Second, accelerations in response to RAs cause
the own aircraft to transition deterministically, but this occurs only when the vertical rate is
outside the target range of the RA, a nonlinear dependence on the current state. Representing
the distribution of the state as a multivariate normal fails to capture exactly how the state evolves
differently in different regions of the state space.

The method described here is only one of several approaches for approximately propagating
Gaussian distributions through nonlinear system dynamics. In particular, the sigma-point sam-
pling technique, described in Appendix D, offers an alternative means of transforming means and
covariances that may provide better results [113].
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APPENDIX C
INTERPOLATION METHODS

Interpolation can be viewed as approximating an unknown function f given only values of
this function at a finite set of points x1, . . . ,xn. This is of particular interest because fitted value
iteration (Section 3.1) requires interpolating between estimates of the cost-to-go function at a set
of discrete states. There are many different interpolation schemes [114], but this appendix focuses
on the class of interpolation functions of the form

g(x) =
n∑
k=1

βk(x)f(xk), (C-1)

where βk is a weighting function, such that
∑n
k=1 βk(x) = 1. Generally, βk(x) should not decrease as

the distance between xk and x increases. There are several ways to define the weighting function
β, as discussed in this appendix. Figure C-2 compares the various interpolation methods on a
two-dimensional problem.

C.1 NEAREST-NEIGHBOR INTERPOLATION

The simplest approach is to assign all weight to the closest discrete state, resulting in a piece-
wise constant function g. Another approach, which can result in a smoother g, involves finding
the k-nearest discrete states to x and assigning weight 1/k to each and zero to all other states.
Figure C-2(a) is an illustration of nearest-neighbor interpolation in two dimensions. Each black
cross represents a data point, and each color represents a different function value. Observe that
the estimates obtained by nearest-neighbor interpolation are particularly coarse, the interpolating
function being piecewise defined.

C.2 MULTILINEAR INTERPOLATION

An alternative approach is to use multilinear interpolation over the box (also called a hyper-
rectangle or orthotope) in the grid that encloses the point x as shown by the notional diagram in
Figure C-1. The weights of the states at the vertices of the box are related to how close they are
to x. The formula for calculating the weights in one dimension is

g(x) = (1− x− x1
x2 − x1

)︸ ︷︷ ︸
β1(x)

f(x1) + (1− x2 − x
x2 − x1

)︸ ︷︷ ︸
β2(x)

f(x2), (C-2)

where x1 is the vertex to the left of x and x2 is the vertex to the right of x. Multilinear in-
terpolation is a multidimensional generalization of the linear interpolation of Equation C-2. The
two-dimensional example in Figure C-1 results in the following estimate for g(x):

g(x) = (1/8)f(x1) + (1/8)f(x2) + (3/8)f(x3) + (3/8)f(x4). (C-3)
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x

β1(x) = (1 − 3/4)(1 − 1/2) = 1/8
β2(x) = (1 − 3/4)(1 − 1/2) = 1/8
β3(x) = (1 − 1/4)(1 − 1/2) = 3/8
β4(x) = (1 − 1/4)(1 − 1/2) = 3/8

Figure C-1. Multilinear interpolation.

Figure C-2(b) is an illustration of multilinear interpolation in two dimensions. Although the func-
tion is not technically smooth, there is a greater amount of gradation than nearest-neighbor inter-
polation.

C.3 SIMPLEX-BASED INTERPOLATION

One potential issue with multilinear interpolation is that the number of vertices used for inter-
polation grows exponentially with the dimensionality of the state space. If d is the number of
dimensions, multilinear interpolation can use up to 2d vertices to estimate the cost-to-go function
for a single point. As suggested by Davies [115], an alternative is to use simplex-based interpolation.
In the simplex method, the boxes are broken into d! multidimensional triangles, called simplexes,
according to the Coxeter-Freudenthal-Kuhn triangulation [116]. Instead of interpolating over a
d-dimensional box with up to 2d vertices, the simplex-based method interpolates over a simplex
defined by up to d+ 1 vertices. Hence, the simplex method scales linearly instead of exponentially
with the dimensionality of the state space. However, multilinear interpolation can provide higher
quality estimates that can lead to better policies for the same grid resolution.

Figure C-2(c) is an illustration of simplex interpolation in two dimensions. Simplex interpo-
lation provides higher quality estimates than nearest-neighbor interpolation while using less data
points than multilinear interpolation.

80



C.4 LOCAL LAGRANGE INTERPOLATION

Lagrange interpolation is often used to interpolate functions of one-dimensional variables. Namely,
if (xk, f(xk)), k = 1, 2, . . . , n are the training data, the Lagrange base polynomials are defined as

Lk(x) =
n∏

i=1,i 6=k

x− xi
xk − xi

, (C-4)

from which the Lagrange polynomial that interpolates the data can be constructed as

g(x) =
n∑
k=1

Lk(x)f(xk). (C-5)

This is a one-dimensional interpolation scheme that is often applied globally, i.e., all data points
are used to construct the polynomial C-5. This is of limited value for interpolation of the cost-to-go
function of Section 3 because the state space is very large. Luo [117] proposed a local multivariate
Lagrange interpolation scheme. Let P = (xk, f(xk)), k = 1, 2, . . . , n represent the training data set,
and let p = (xk, f(xk)), k = 1, 2, . . . , N represent a subset of these data, where p ∈ P, N ≤ n.
Then the Lagrange base polynomials are

Lk(x) =
N∏

i=1,i 6=k

(x− xi)T (xk − xi)
(xk − xi)T (xk − xi)

. (C-6)

The Lagrange interpolating polynomial is

g(x) =
N∑
k=1

φk(x)f(xk), (C-7)

where the normalized Lagrange base polynomials are

φk(x) = Lk(x)∑N
i=1 Li(x)

. (C-8)

Figure C-2(d) is an illustration of local Lagrange interpolation in two dimensions. The func-
tion value at each point was interpolated using the data at the corners of the smallest square
in which the point is contained, thus requiring the same number of data points as multilinear
interpolation. However, the performance is noticeably different.
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(a) Nearest neighbor interpolation.
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(b) Multilinear interpolation.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) Simplex interpolation.
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(d) Local Lagrange interpolation.

Figure C-2. Comparision of interpolation methods in two dimensions. The data points are indicated with
black crosses.
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APPENDIX D
SAMPLING METHODS

If X is a (possibly multidimensional) random variable with density p and f is a function of
X, then the expected value of the random variable f(X) is

Ep[f(X)] =
∫
p(x)f(x) dx. (D-1)

Calculating the expected value for a function of a random variable arises in several contexts:

• Applying the Bellman operator: The random variable X represents the state at the next
decision stage, and f is the cost-to-go function. (Section 3.1)

• Estimating the probability of conflict from the current state: The random variable
X represents the future trajectories of the aircraft, and f indicates whether an encounter
occurs. (Section 4.3)

• Evaluating the performance of a system: The random variable X represents an en-
counter, and f is the performance metric used for evaluation (e.g., conflict probability).
(Section 5.4)

In general, it is not possible to evaluate the integral in Equation D-1 analytically. This section
outlines sampling methods for estimating Ep[f(X)].

D.1 DIRECT MONTE CARLO

The direct Monte Carlo estimate of Ep[f(X)] is given by

1
N

N∑
k=1

f(x(k)), (D-2)

where x(1), . . . ,x(N) are sampled directly from p. Although this estimate is unbiased, direct Monte
Carlo may require a large number of samples to provide adequate accuracy [118].

D.2 IMPORTANCE SAMPLING

Importance sampling is a technique for improving the accuracy of estimates [73,119]. In importance
sampling, one draws samples from a new distribution q, called the proposal distribution, that favors
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important samples, i.e., those that contribute most to p(x)f(x). Equation D-1 can be written as

Ep[f(X)] =
∫
p(x)f(x) dx

=
∫
q(x)p(x)

q(x)f(x) dx

= Eq
[
p(X)
q(X)f(X)

]
, (D-3)

where p(x)/q(x) is called the likelihood ratio. The unbiased importance sampling estimator of f is

1
N

N∑
k=1

f(x(k))p(x
(k))

q(x(k))
, (D-4)

where x(1), . . . ,x(N) are samples from q. In general, the proposal distribution must satisfy q(X) =
0 ⇒ f(X) p(X) = 0 to be admissible. The optimal proposal distribution q∗ is proportional to
|f(x)|p(x) [120].

D.3 SIGMA-POINT SAMPLING

Sigma-point sampling involves generating deterministically-chosen samples that capture statistics
of the distribution [113]. If X is m dimensional, there are 2m+1 sample points x(k) with associated
weights w(k) defined by

x(k) = µ w(k) = κ
m+κ k = 0,

x(k) = µ+ (
√

(m+ κ)Σ)k w(k) = 1
2(m+κ) k = 1, . . . ,m,

x(k) = µ− (
√

(m+ κ)Σ)k−m w(k) = 1
2(m+κ) k = m+ 1, . . . , 2m,

(D-5)

where κ is a scaling parameter and (
√

(m+ κ)Σ)k is the kth row of the matrix square root of
(m+κ)Σ. The mean and covariance of X are given by µ and Σ, respectively. These sample points
are called sigma points. These weighted sigma points capture the true mean and covariance of X.
The sigma-point estimate is given by

N∑
k=1

f(x(k))w(k), (D-6)

where N = 2m+ 1 [113,121].
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APPENDIX E
PROPOSAL DISTRIBUTIONS

This appendix presents the importance sampling proposal distributions discussed in Section
4. An effective proposal distribution favors sample trajectories that result in conflict but that are
still likely to occur according to the system dynamics.

In the following discussion, let Pr(C | x, a) represent the probability that a conflict will occur
from state x assuming action a is continuously executed, and let P̂r(C | x, a) represent an estimate
of that probability. Let trajectory T = (x(t0), . . . ,x(tK)) be a random variable representing a
trajectory that is produced by starting at state x(t0) and executing action a until CPA. Let W =
(w(t0), . . . ,w(tK−1)) be a random variable representing the noise at each time step along the
trajectory. The noise W maps uniquely to a trajectory T according to Equation A-2. Let p(T )
and p(W ) represent the density of T and of W , respectively. Define C(T ) as the conflict indicator
function:

C(T ) =
{

1 if T results in a conflict,
0 otherwise.

(E-1)

The probability of conflict is

Pr(C | x, a) = Ep[C(T )] = Eq
[
C(T ) p(W )

q(W )

]
, (E-2)

for which the unbiased importance sampling estimator (Appendix D.2) is

P̂r(C | x, a) = 1
Nt

Nt∑
i=1

C(T (i)) p(W
(i))

q(W (i))
, (E-3)

where W (1), . . . ,W (Nt) are independent samples from q.

The density p(W ) can be written explicitly as

p(W ) = p(w(t0)) p(w(t1)) · · · p(w(tK−1)) =
K−1∏
k=0

1
2π|R|1/2 e

− 1
2 w(tk)TR−1w(tk), (E-4)

where R is the covariance of the noise. Moreover, the proposal distribution q(W ) can be written
as

q(W ) = q(w(t0) | x(t0)) q(w(t1) | x(t1)) · · · q(w(tK−1) | x(tK−1)). (E-5)

The importance sampling estimator for Pr(C | x, a) becomes

P̂r(C | x, a) = 1
Nt

Nt∑
i=1

C(T (i))
K−1∏
k=0

p(w(i)(tk))
q(w(i)(tk) | x(i)(tk))

, (E-6)

where w(i)(tk) is the noise at time tk for sample trajectory i and x(i)(tk) is the state at time tk for
sample trajectory i. An effective proposal distribution q(w(i)(tk) | x(i)(tk)) from which to sample
the noise at each time step is one in which the sample trajectory resulting from the noise will result
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in a conflict with high probability. This process is known as sequential, or dynamic, importance
sampling. The proposal distribution is state-dependent because the distribution from which to
sample the noise to produce conflicts is a function of how far away the state is from conflict at each
time.

The following sections describe several proposal distributions. In all of the descriptions,
let x(t) represent the state at time t in a sample trajectory for which a proposal distribution
q(w(t) | x(t)) is desired.

E.1 CONSTANT ACCELERATION PROPOSAL

If x(t) is not a state corresponding to an RA execution, both ownship and intruder accelerations
can be applied to artificially force the next state closer to a conflict. This process continues until
CPA. The resulting trajectory should result in a conflict with high probability. If, on the other
hand, x(t) is a state corresponding to an RA execution, the ownship acceleration is dictated by the
issued RA, and therefore only the intruder acceleration can be changed to cause a conflict.

A conflict can be induced by applying acceleration at each time step that reduces the projected
vertical separation at CPA to zero. A more sophisticated way of inducing conflict is to force the
trajectory to reach the vertical separation most likely to occur while executing the action but that
still qualifies as a conflict. More explicitly, let hproj represent the projected vertical separation
at CPA achieved by the noiseless trajectory starting from x(t) and executing action a. Then the
targeted vertical separation htarget should be 100 ft if hproj > 100 ft, −100 ft if hproj < −100 ft, and
hproj otherwise. That is,

htarget =


+100 ft if hproj > 100 ft,
−100 ft if hproj < −100 ft,
hproj otherwise.

(E-7)

Forcing the trajectory to reach the closest point in the conflict region prevents the likelihood ratios
from becoming too small. Small likelihood ratios indicate that the proposal distribution q favors
samples in low-probability regions of p. This generally is not preferable because, as the form of the
optimal proposal distribution suggests, an effective proposal distribution should be as similar to p
as possible while still favoring trajectories that result in conflict.

Consider the case when no RA is currently being executed. If constant accelerations ḧ1 and
ḧ2 are applied to the own and intruder aircraft, respectively, in order to achieve a relative altitude
of htarget at CPA, the accelerations must satisfy:

1
2(ḧ2 − ḧ1)τ2 + hproj = htarget (E-8)

ḧ2 − ḧ1 = 2(htarget − hproj)
τ2 . (E-9)

Equation E-9 defines a set of infinitely-many combinations of ḧ1 and ḧ2 that could be applied to
reach htarget. However, one would like to keep the accelerations close to the mean of the distribution
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ḧ1

ḧ2

p

q

Figure E-1. Comparison of distributions p and q. Shown are error ellipses for the two distributions. The
distribution p is centered at the origin, while q is centered at the point on the line (Equation E-9) closest to
the origin.

p(w(t)) to prevent the likelihood ratios from becoming too small. Because the mean of p(w(t)) is
zero, the task of finding the accelerations closest to the mean reduces to that of finding the point
on the line ḧ2 = ḧ1 + 2(htarget − hproj)/τ2 closest to the origin. It is straightforward to show that
the solution is

ḧ1 = hproj − htarget
τ2 , (E-10)

ḧ2 = −ḧ1. (E-11)

Sampling from a proposal distribution q(w(t) | x(t)) that is a Gaussian with mean as given by
Equations E-10 and E-11 and covariance identical to p(w(t)), namely R, should result in a lower
variance estimate of the probability of conflict. Figure E-1 compares the distribution p with the
proposal distributon q. The form of the proposal distribution need not be Gaussian; any distribution
that favors samples close to Equations E-10 and E-11 will work suitably. Moreover, it is crucial
to note that although the mean of the proposal distribution are accelerations which, if applied
constantly until CPA, would lead to a conflict, the accelerations are only applied for one time step,
after which the next state is sampled and the calculations repeated.

Now consider the case when an RA is being executed. Only the own acceleration can be
controlled to move closer to a conflict. Analogous to Equations E-8 and E-9, the requisite intruder
acceleration is

1
2 ḧ2τ

2 + hproj = htarget (E-12)

ḧ2 = 2(htarget − hproj)
τ2 . (E-13)

Intuitively, this is exactly twice that of the intruder acceleration when no RA is being executed.
If the accelerations remain uncorrelated in the proposal distribution, the proposal distribution can
be written as the product of the marginals

q(w1(t) | x(t)) q(w2(t) | x(t)). (E-14)
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Since no change is made to the own acceleration, it is convenient to set q(w1(t) | x(t)) = p(w1(t))
to simplify the likelihood ratio calculation. The marginal distribution q(w2(t) | x(t)) is a Gaussian
with mean given by Equation E-13 and variance R22.

E.2 MAXIMUM-LIKELIHOOD ACCELERATION PROPOSAL

An alternative proposal distribution can be obtained as follows. Again, the RA execution and no-
RA execution cases must be considered separately. The latter case is considered first. Previously,
the requisite constant accelerations needed to arrive in the conflict region from an arbitrary x(t)
were derived. Now let (ḧ1(t0), ḧ2(t0), . . . , ḧ1(tK−1), ḧ2(tK−1)) denote an acceleration sequence of
the aircraft starting from x(t). That is, ḧ1(t0) and ḧ2(t0) are applied for the first time step, ḧ1(t1)
and ḧ2(t1) are applied for the second time step, and so on until CPA. If it is desired that the
aircraft achieve a relative altitude of htarget after τ seconds starting from state x(t), the control
history must satisfy

htarget = hproj + (ḧ2(t0)− ḧ1(t0))(τ − 1) + · · ·

+ (ḧ2(tK−2)− ḧ1(tK−2)) + 1
2(ḧ2(t0)− ḧ1(t0)) + · · ·

+ 1
2(ḧ2(tK−1)− ḧ1(tK−1)),

(E-15)

where ∆t = 1 s was used. The objective is to find the accelerations that both satisfy Equation
E-15 and that produce a trajectory that is most likely to occur by executing action a. This
is equivalent to minimizing the difference between the trajectory produced by the accelerations
(ḧ1(t0), ḧ2(t0), . . . , ḧ1(tK−1), ḧ2(tK−1)) and the noiseless trajectory.

Begin by defining

u =



ḧ1(t0)
ḧ2(t0)
ḧ1(t1)
ḧ2(t1)

...
ḧ1(tK−1)
ḧ2(tK−1)


, (E-16)

α =



1
2 − τ
τ − 1

2
3
2 − τ
τ − 3

2...
−1

2
1
2


, (E-17)

and ∆h = htarget − hproj. Then Equation E-15 can be expressed as
αTu = ∆h. (E-18)
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Since the accelerations are nominally zero-mean Gaussian, the most likely trajectory that achieves
the desired vertical separation is the one that minimizes the square norm of the acceleration vector
u subject to the constraint in Equation E-18. That is, the most likely accelerations are

u∗ = arg min
u

1
2‖u‖

2. (E-19)

This is a quadratic programming problem that can be easily solved using the method of Lagrange
multipliers [122]. If f(u) = 1

2‖u‖
2 is the objective to be minimized and g(u) = αTu − ∆h is the

linear constraint, then one must find u that satisfies

∇uf(u)− λ∇ug(u) = 0, (E-20)

where λ is the Lagrange multiplier. This equation easily simplifies to u − λα = 0 or u = λα.
Multiplying both sides by αT yields αTu = ∆h = λ‖α‖2. Thus λ = ∆h/‖α‖2 and

u∗ = ∆hα
‖α‖2

. (E-21)

The square norm of α is

‖α‖2 = 1
2 + 2

τ−1/2∑
t=1/2

t2. (E-22)

It follows that the first accelerations ḧ1 and ḧ2 to apply to state x(t) are

ḧ1 = (1− 2τ)∆h
2‖α‖2 , (E-23)

ḧ2 = −ḧ1. (E-24)

As before, the proposal distribution is a Gaussian with mean given by Equations E-23 and E-24.
It is straightforward to show that the marginal distribution of w2(t) of the proposal distribution
when executing an RA has a mean given by

ḧ2 = (2τ − 1)∆h
‖α‖2

, (E-25)

which is exactly double that of Equation E-24.

The optimization performed here happened to admit an analytic solution due to the simplicity
of the problem. However, solving Equation E-19 typically requires approximation techniques such
as gradient descent or a Newton-like method to minimize the objective [122].

E.3 ANALYTIC PROPOSAL

Although there are analytic methods for computing the probability of conflict for some simple
models [68], analytic solutions do not always exist. Even for the relatively simple encounter model
of Appendix A, the expression for the probability of conflict quickly becomes intractable, as the
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number of random accelerations that contribute to the state at CPA depends upon the vertical rate
ḣ1 at all preceding times. However, a reasonably accurate approximation to the analytic solution
that is feasible to evaluate can be derived as follows.

In Appendix B, the following approximations to the mean and covariance updates of the
aircraft state were derived:

µ̂(t+ ∆t) = A(∆t)µ̂(t) +B(∆t)u(t, µ̂(t)), (E-26)
P̂ (t+ ∆t) = A(∆t)P̂ (t)A(∆t)T +G(∆t, µ̂(t))RG(∆t, µ̂(t))T . (E-27)

The probability of a conflict, Pr(C | x, a), can then be estimated by initializing the mean
µ̂(t0) = x and the covariance P̂ (t0) = 0 and applying the recursions in Equations E-26 and E-27
to obtain µ̂(tK) and P̂ (tK), the approximate mean and covariance of the state x(tK) at CPA. The
marginal distribution for h at CPA is Gaussian with mean equal to the first element in µ̂(tK) and
variance equal to the first element in P̂ (tK). To determine the probability of conflict, one simply
integrates the density from −100 ft to +100 ft.

It can be shown that the probability of a conflict from a state x not in the conflict region
when executing action a is Pr(C | x, a) = EPr(x′|x,a)[Pr(C | x′, a)]. This may be written

EPr(x′|x,a)[Pr(C | x′, a)] =
∫

Pr(C | f(x,w, a), a) p(w) dw, (E-28)

where x′ = f(x,w, a) is the successor state from x when taking action a with noise w. Suppose
Pr(C | x′, a) is known for all possible successor states x′. In such a situation, one could estimate
the probability of conflict Pr(C | x) by producing samples of the immediate noise w. It can be
shown that the optimal proposal distribution from which to draw such samples is

q∗(w | x) ∝ Pr(C | f(x,w, a), a) · p(w). (E-29)

The mean of this optimal proposal distribution can be approximated by drawing N = 2nw + 1
sigma-point samples χ(i) from p(w) with associated weights w(i). For each sample, define

P (i) = Pr(C | f(x, χ(i), a), a), (E-30)

which can be estimated using the analytic approximation to Pr(C) described above. It follows that

Eq∗ [w] =
∫
w · q∗(w | x) dw ≈

N∑
i=1

w̃(i)χ(i), (E-31)

where
w̃(i) = w(i)P (i)∑N

k=1w
(k)P (k)

(E-32)

are the normalized weights. Thus, this approximation of the mean of the optimal proposal distri-
bution q∗ becomes the mean of a Gaussian proposal distribution. As with the preceding proposal
distributions, the covariance was chosen arbitrarily to be the same as that of p(w). This proposal
distribution favors samples that have both a high probability of conflict and a high probability of
occurring under the model. Thus, the analytic probability of conflict approximation is used as a
heuristic to guide the sample trajectories toward conflict.
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E.4 DYNAMIC PROGRAMMING PROPOSAL

The dynamic programming proposal distribution is identical to that of the analytic proposal dis-
tribution except that the dynamic programming estimate of the probability of conflict (given in
Section 4.2) is used to determine the mean of the distribution.
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APPENDIX F
PROOF OF PARETO OPTIMALITY

Suppose that the immediate cost function is of the form

c(s, a) =
∑
i

λifi(s, a), (F-1)

where λi > 0 and fi(s, a) ∈ {0, 1}. In addition, when following any policy, fi(s, a) may be 1 only
once. The function fi(s, a) can be thought of as an indicator of whether event i occurs at state
s when taking action a. In the hypothetical collision avoidance problem, there are two events: a
conflict occurs for the first time and an alert is issued for the first time.

The cost-to-go function when using an immediate cost function of the form specified in Equa-
tion F-1 satisfies:

Jπ(s) = E
[∑

t

∑
i

λifi(st, π(st)) | S0 = s, π

]

=
∑
i

λi E
[∑

t

fi(st, π(st)) | S0 = s, π

]
=
∑
i

λipi(π, s), (F-2)

where st is the state at time t and S0 is a random variable specifying the initial state. The function
pi(π, s) is the probability of event i occurring when starting in state s and following policy π.

Assuming some distribution b over starting states, the probability that event i occurs when
following π is given by

pi(π) ≡
∑
s

b(s)pi(π, s). (F-3)

The expected cost of a policy π is

J(π) ≡
∑
s

b(s)Jπ(s). (F-4)

It follows that
J(π) =

∑
i

λipi(π). (F-5)

Value iteration finds an optimal policy π∗ such that J(π∗) ≤ J(π) holds for all policies π. It
can be shown that an optimal policy with respect to a cost function λ = {λ1, . . . , λn} is Pareto
optimal with respect to p1, . . . , pn, as stated by the following proposition.

Proposition 1. Suppose that an optimal policy π∗ is known for a given cost function. For any
policy π and any j, if pj(π) < pj(π∗) then there exists some i such that pi(π) > pi(π∗).
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Proof. For a contradiction, assume that pj(π) < pj(π∗) and pi(π) ≤ pi(π∗) for all i. It follows that,
for all λ,

J(π) =
∑
i

λipi(π)

= λjpj(π) +
∑
i 6=j

λipi(π)

< λjpj(π∗) +
∑
i 6=j

λipi(π∗)

= J(π∗). (F-6)

Hence, J(π) < J(π∗). If λ is chosen to be the cost function for which π∗ is optimal, then J(π∗) ≤
J(π), which is a contradiction.

There are two important consequences of Pareto optimality.

1. Given an optimal policy, there is no other policy with the same alert rate and a lower conflict
rate.

2. Given an optimal policy, there is no other policy with the same conflict rate and a lower alert
rate.

Hence, the system operating characteristic curve (Section 5.3) traced by optimal policies with
varying alert cost will never be to the right or below that of any other policy.
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APPENDIX G
COMPUTING THE TIME-TO-CONFLICT DISTRIBUTION

Section 7.1 describes a method to efficiently handle dynamics in three spatial dimensions that
involves estimating a distribution over τ , the time to horizontal conflict. This appendix explains
how to compute the time-to-conflict distribution for an arbitrary Markov process using dynamic
programming. For simplicity, assume that time is discretized to one-second intervals and that the
time horizon is tmax. The probability of transitioning from s to s′ is given by Pr(s′ | s).

The algorithm uses Ds(τ) to represent the probability that the time-to-conflict falls within
the interval [τ, τ + 1) when starting at state s. If τ = tmax, then Ds(τ) represents the probability
that the time-to-conflict falls within the interval [tmax,∞). The algorithm uses arrays of length
tmax to represent Ds for each state s. The arrays are initialized as follows:

Ds(τ) =


1 if s ∈ C and τ = 0,
1 if s /∈ C and τ = tmax,
0 otherwise,

(G-1)

where s ∈ C means that s is a conflict state.

Once Ds is initialized, a copy is stored in D′s. For each s /∈ C, D′s is updated as follows:

D′s(τ) =


0 if τ = 0,∑
s′ Pr(s′ | s)Ds′(τ − 1) if 0 < τ < tmax,∑
s′ Pr(s′ | s) (Ds′(τ − 1) +Ds′(τ)) otherwise.

(G-2)

This update process assigns to D′s the weighted sum of the histograms represented by Ds′ shifted
to the right one second, where the weights are determined by Pr(s′ | s).

After D′s is computed for all states, it is copied to Ds. This process is repeated tmax times,
after which Ds will represent the true distribution over τ , truncated at tmax. If there are n discrete
states and there are a maximum of k successor states, the time complexity of the algorithm is
O(t2maxkn).
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APPENDIX H
TRACKER

For the purposes of evaluating the dynamic programming logic in simulation, a tracker was
developed that emulates the behavior of the tracker implemented in TCAS for aircraft reporting
altitude with 25-ft quantization [6]. The output of the tracker is not a probability distribution over
states, a common example being a Gaussian distribution in the case of Kalman filtering, but rather
a single point estimate of altitude, range, and range rate, among others. This appendix relates the
details of the tracker.

The internal state of the tracker at time t is

(ĥown(t), ĥint(t), r̂(t), ̂̇hown(t), ̂̇hint(t), ̂̇r(t), ̂̈r(t)). (H-1)

The measurement at time t is
(h̃own(t), h̃int(t), χ̃(t), r̃(t)). (H-2)

Upon receiving the first measurement, the tracker initializes the altitudes and intruder range
to their measured values and the intruder range rate to zero. After receiving the second measure-
ment, the tracker estimates the intruder range rate and the altitude rates using finite differences,
i.e., the difference between the current measurements and the previous ones divided by the time
step between measurements ∆t (nominally one second). Upon receipt of the second measurement,
moreover, the intruder range acceleration is initialized to zero.

The own altitude and own altitude rate are updated at each time using a two-step process.
First, the own altitude at time t+ ∆t is predicted using a constant velocity model:

hown,pred(t+ ∆t) = ĥown(t) + ̂̇
hown∆t. (H-3)

Then the own altitude and own altitude rate at time t + ∆t are updated using the most recent
measurement:

ĥown(t+ ∆t) = hown,pred(t+ ∆t) + α(h̃own(t+ ∆t)− hown,pred(t+ ∆t)), (H-4)̂̇
hown(t+ ∆t) = ̂̇

hown(t) + β

∆t(h̃own(t+ ∆t)− hown,pred(t+ ∆t)), (H-5)

where α and β control the level of correction in the own altitude and own altitude rate, respectively,
due to the measurement. This is known as an α-β tracker. The intruder altitude and altitude rate
are updated similarly. If the intruder altitude has not changed for over 6.5 seconds, the intruder
altitude is reset to its measured altitude and the intruder altitude rate to zero. The α and β
values for the own aircraft updating are fixed at 0.6 and 0.257, respectively. However, the α and β
values for the intruder aircraft updating are dependent on the size of the prediction error and the
magnitude of the intruder altitude rate.

The update for the range and range rate uses an α-β-γ tracker. The predicted range and
range rate are

rpred(t+ ∆t) = r̂(t) + ̂̇r(t)∆t, (H-6)
ṙpred(t+ ∆t) = ̂̇r(t) + ̂̈r(t)∆t. (H-7)
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The updated range and range rate at time t+ ∆t are then

r̂(t+ ∆t) = rpred(t+ ∆t) + α(r̃(t+ ∆t)− rpred(t+ ∆t)), (H-8)

̂̇r(t+ ∆t) = ṙpred(t+ ∆t) + β

∆t(r̃(t+ ∆t)− rpred(t+ ∆t)). (H-9)

When a sufficient amount of time has passed since the own aircraft first started a track on the
intruder, i.e., if the intruder has sufficient “firmness,” then the range acceleration is updated as

̂̈r(t+ ∆t) = ̂̈r(t) + γ

(∆t)2 (r̃(t+ ∆t)− rpred(t+ ∆t)). (H-10)

The α, β, and γ coefficients for the range updating generally decrease as the firmness increases,
indicating increased confidence in the prediction.

All values for α, β, and γ come from the minimum operational performance standards for
TCAS II [6].
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APPENDIX I
MINI TCAS

A simplified version of TCAS, called mini TCAS in this report, was implemented that issues
RAs based only on one perfect aircraft state defined in terms of h, τ , ḣ1, and ḣ2. The major
assumptions of mini TCAS are:

1. The intruder is not TCAS-equipped but is reporting altitude and is under perfect surveillance.

2. The horizontal range rate is −500 ft/s.

3. No tracking or encounter monitoring is performed. Hence, mini TCAS is a memory-less
system.

4. Only initial RA sense and strength are selected. Thus, no strength increases or reversals are
issued.

5. No minimum or maximum altitudes are enforced.

6. No intruder intent information, in the form of an RA coordination message, is received.

7. The tau-rising test and horizontal miss distance test are not performed.

The various constants that mini TCAS uses are listed in Table I-1. These constants will be discussed
in the remainder of the appendix.

TABLE I-1

Constants used in mini TCAS.

DMOD Threshold that defines safety buffer around own aircraft used for threat detection
RDTHR Threshold that defines converging intruders
TRTHR Range threshold for converging intruders in the range test

H1 Threshold for determining if diverging intruder passes the range test
ZTHR Altitude threshold for threat detection
TVTHR Time threshold for time until co-altitude in the altitude test
ALIM Altitude threshold for RA selection

Given h, τ , ḣ1, and ḣ2, mini TCAS calculates the slant range, rs, and the slant range rate,
ṙs. It assumes that the intruder is closing horizontally at ṙh = −500 ft/s. Using the fact that
τ = −rh/ṙh, rh ≥ 0, the slant range is given by

rs =
√
r2
h + h2 =

√
(ṙhτ)2 + h2. (I-1)
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The slant range rate is

ṙs = rhṙh + hḣ√
r2
h + h2

, (I-2)

where ḣ = ḣ2 − ḣ1.

Because mini TCAS decides which RA, if any, to issue based solely on the current aircraft
state, the critical interval was approximated by [modified_tau_uncapped, true_tau_uncapped]. If
rs ≤ DMOD, modified_tau_uncapped is zero, indicating the critical interval starts immediately
because the own aircraft safety buffer defined by DMOD has already been violated. Otherwise,

modified_tau_capped = − r2
s − DMOD2

rs ·min(ṙs,−RDTHR) , (I-3)

where RDTHR = 10 ft/s. The end of the critical interval, true_tau_uncapped, is always defined as

true_tau_uncapped = − rs
min(ṙs,−RDTHR) . (I-4)

If the intruder is diverging (ṙs > 0), the critical interval is [0,0], or undefined.

The following sections describe the threat detection, sense selection, and strength selection
components of mini TCAS.

I.1 THREAT DETECTION

The intruder is declared a threat if and only if it passes the range and altitude tests and fails the
altitude separation test.

I.1.1 Range Test

The first step in the threat detection process is the range test. The intruder passes the range
test if either of the following is true.

1. (converging intruder) ṙs ≤ RDTHR ∧ rs < TRTHR ∧modified_tau_uncapped ≤ TRTHR;

2. (diverging intruder) ṙs > RDTHR ∧ rs < DMOD ∧ rsṙs ≤ H1,

where TRTHR and H1 are thresholds dependent on the encounter sensitivity level. Note that this
is a simplification of the true range test in that the tau-rising test and the horizontal miss distance
test are not performed.

I.1.2 Altitude Test

If there is already insufficient vertical separation between the aircraft, i.e., if |h| < ZTHR, the
intruder passes the altitude test automatically if modified_tau_uncapped is zero. Otherwise, the
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intruder passes the test if the projected vertical miss distance, vmd, during the critical interval is
less than ZTHR. The projected relative altitudes at the beginning and end of the critical interval,
respectively, are determined by linear extrapolation:

hbeg = h+ (ḣ2 − ḣ1) ·modified_tau_uncapped, (I-5)
hend = h+ (ḣ2 − ḣ1) · true_tau_uncapped. (I-6)

If the aircraft are projected to cross altitudes during the critical interval (sign(hbeg) 6= sign(hend)),
then vmd = 0. Otherwise, vmd = min(|hbeg|, |hend|). Consequently, if vmd < ZTHR, the intruder
passes the altitude test.

If, on the other hand, |h| ≥ ZTHR and there is some finite value for the vertical τ , or time to
co-altitude, the intruder passes the altitude test if τ ≤ TVTHR. The vertical τ is finite if the rate
of change of the vertical separation magnitude A = |h| is less than −1 ft/s. That is,

Ȧ = (ḣ2 − ḣ1)sign(h) < −1 ft/s. (I-7)

If Ȧ ≥ −1 ft/s, the intruder fails the altitude test. The threshold TVTHR is a function of the
sensitivity level and dependent on whether or not the vertical closure rate is due primarily to the
intruder. The vertical closure rate is attributed primarily to the intruder if either (1) the vertical
rate of own aircraft is less than 600 ft/min or (2) both aircraft are climbing or both aircraft are
descending and |ḣ2| > |ḣ1|. Otherwise, the vertical closure rate is not primarily due to the intruder.

Obviously, if |h| ≥ ZTHR and modified_tau_uncapped = 0, the intruder fails the altitude test.

I.1.3 Altitude Separation Test

The intruder passes the altitude separation test if at least one of the following is true.

1. |h| > 600 ft ∧ (ḣ1 = 0 ∨ ḣ2 = 0 ∨ sign(ḣ1) = sign(ḣ2));

2. |h| > 850 ft ∧ ḣ1 6= 0 ∧ ḣ2 6= 0 ∧ sign(ḣ1) = −sign(ḣ2).

I.2 SENSE SELECTION

Sense selection is performed if and only if the intruder is declared a threat. As discussed in
Section 1.2, the response to both upward-sense (Climb) and downward-sense (Descend) RAs is
modeled and the projected vertical separation at the beginning and end of the critical interval, hbeg
and hend, respectively, is calculated. The intruder’s trajectory is modeled as a straight line with
a constant vertical rate. A pilot delay model is implemented for own aircraft in which the pilot
requires five seconds to respond to the RA. After the pilot-response delay, the own aircraft trajectory
is modeled as accelerating at 0.25 g (8 ft/s2) until reaching the target vertical rate, after which it
maintains that rate for the remainder of the encounter. The target vertical rate is 1500 ft/min for
the Climb RA and −1500 ft/min for the Descend RA. If modified_tau_uncapped = 0, hbeg = h and
if true_tau_uncapped = 0, hend = h. The vertical separation during the critical interval, vmd, is

vmd =
{
hbeg if |hend| > |hbeg|,
hend otherwise.

(I-8)
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Let vmd(Climb) denote vmd for the Climb RA and vmd(Descend) denote vmd for the Descend RA.

If the aircraft are not considered to be co-altitude (|h| > 100 ft), then the downward sense
is selected if the upward-sense RA is an altitude-crossing RA, the downward-sense RA is not, and
the downward-sense RA provides at least ALIM separation:

sign(h) 6= sign(vmd(Climb)) ∧ sign(h) = sign(vmd(Descend)) ∧ |vmd(Descend)| ≥ ALIM. (I-9)

The threshold ALIM is a function of the altitude layer of own aircraft. Similarly, the upward sense
is selected if

sign(h) 6= sign(vmd(Descend)) ∧ sign(h) = sign(vmd(Climb)) ∧ |vmd(Climb)| ≥ ALIM. (I-10)

If the previous criteria do not hold, then the upward sense is selected if

|vmd(Climb)| > |vmd(Descend)| (I-11)

and the downward sense is selected otherwise.

I.3 STRENGTH SELECTION

The strength selection process proceeds by first calculating the vertical miss distance during the
critical interval using linear extrapolation, as was done during the threat detection process (Equa-
tions I-5 and I-6). Vertical speed limits (VSLs) are not modeled if at least one of the following is
true.

1. |ḣ2| < 1000 ft/min ∧ |h| < ALIM ∧ |vmd(·)| < ALIM ∧ |ḣ1| ≤ 600 ft/min;

2. |ḣ2| ≥ 1000 ft/min ∧ |vmd(·)| < ALIM ∧ |ḣ1| ≤ 600 ft/min,

where vmd(·) is the vertical separation during the critical interval, vmd(Climb) if the upward sense
is selected, vmd(Descend) if the downward sense is selected. Otherwise, each VSL is modeled and
the vertical separation during the critical interval is calculated exactly as in the sense selection
process (Equation I-8).

The least restrictive VSL that provides at least the target separation is selected as the RA.
The target separation for all VSLs except Do Not Climb and Do Not Descend is ALIM + 75 ft. The
target separation for Do Not Climb and Do Not Descend is ALIM. If no VSL provides at least the
target separation, the positive RA in the given sense is selected.

If a VSL is selected, but it is corrective, i.e., results in own aircraft changing its vertical rate,
then Do Not Climb or Do Not Descend is selected instead, depending on the sense.
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NOTATION

a action
b belief state
B Bellman update operator

c(s, a) cost function
h vertical separation
ḣ1 own vertical rate
ḣ2 intruder vertical rate
J cost-to-go function
J∗ optimal cost-to-go function

Pr(A) probability of alert
Pr(C) probability of conflict

π policy
π∗ optimal policy
s state

sRA RA state
t time

T (s′ | s, a) transition model
τ time to horizontal conflict
x state (interpreted as a vector)
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