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1. PROBLEM STATEMENT 

Increased data sharing and interoperability has created challenges in maintaining a level of trust 

and confidence in Department of Defense (DoD) systems. As tightly-coupled, unique, static, and rigorously 

validated mission processing solutions have been supplemented with newer, more dynamic, and complex 

counterparts, mission effectiveness has been impacted. On the one hand, newer deeper processing with 

more diverse data inputs can offer resilience against overconfident decisions under rapidly changing 

conditions. On the other hand, the multitude of diverse methods for reaching a decision may be in apparent 

conflict and decrease decision confidence. This has sometimes manifested itself in the presentation of 

simultaneous, divergent information to high-level decision makers. In some important specific instances, 

this has caused the operators to be less efficient in determining the best course of action.  

In this paper, we will describe an approach to more efficiently and effectively leverage new data 

sources and processing solutions, without requiring redesign of each algorithm or the system itself. We 

achieve this by instrumenting the processing chains with an enterprise blockchain framework. Once 

instrumented, we can collect, verify, and validate data processing chains by tracking data provenance using 

smart contracts to add dynamically calculated metadata to an immutable and distributed ledger. This non-

invasive approach to verification and validation in data sharing environments has the power to improve 

decision confidence at larger scale than manual approaches, such as consulting individual developer subject 

matter experts to understand system behavior. 

In this paper, we will present our study of the following: 

1. Types of information (i.e., knowledge) that are supplied and leveraged by decision makers and 

operational contextualized data processes (Figure 1) 

 

 

Figure 1: Levels of information processing. 

2. Benefits to verifying data provenance, integrity, and validity within an operational processing 

chain 

3. Our blockchain technology framework coupled with analytical techniques which leverage a 

verification and validation capability that could be deployed into existing DoD data-processing 

systems with insignificant performance and operational interference
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2. FRAMEWORK OVERVIEW 

We begin by describing the meaning of data, information, and knowledge and provide our 

definition of decision support. Data, information, and knowledge are often used interchangeably when 

describing the merits of a system, but each one represents a distinct level of contextualization and 

processing. Data is the lowest form of this, representing analytic elements with little or no filtering, such as 

signal detections processed from a sensor focal plane. Data is used to derive information, by the addition 

of context, such as the types of targets whose signals are important to detect. Knowledge is information that 

means something in broader situational awareness or a decision, such as the types of detected target 

behavior in a scenario that signifies danger. (Amidon, 1997) 

As an example, there have been a number of efforts that have moved ‘data integration’ in the 

forward direction and have demonstrated operational capability for situational awareness. These efforts 

illustrated the conversion of data from various sources, to information via various software applications, to 

knowledge at presentation to the operator or user (Figure 2). By applying levels of processing to create an 

enhanced situational awareness picture, it allows senior leaders to act and make decisions more confidently. 

These levels of processing range from simple data ingestion for visualization purposes to classification 

services to provide context to mission events. All provide varying levels of information for decision support. 

 

Figure 2: An example of a data-driven decision support system. 

The ultimate goal of the systems we describe is to inform high-level decisions. This may require 

many steps of processing, each representing increased contextualization. This also means that there are 

many nuanced processing paths through which knowledge could be derived. When you consider the 

timeframe within which a response may be needed, understanding the subtleties of the processing becomes 

exponentially more difficult when more data, algorithms, and knowledge services are in the system. This 

is the risk we seek to mitigate. 
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Next, we will describe the data sharing and interoperability environment, which have been built to 

enable rapid decision support on a large-scale system. Such an environment has four functional 

requirements: (1) a low barrier to innovative idea implementation, (2) a large open development 

environment, (3) a messaging method that supports integration, and (4) an automated validation and 

verification of adopted components. Figure 3 shows the cycle of the four requirements, and highlights in 

blue the verification and validation requirement, which is currently under examined at the system scale and 

is the focus of this paper.  

 

 

Figure 3: Key attributes needed for system evolution. 

While individual developers may be required to meet basic expectations to act with integrity, such as 

compliance with their data and application contracts and the use of software security scans, there is no 

efficient manner to assess the decision support utility and veracity of the data and services as assembled in 

the overall system. Many large scale systems do not prioritize cybersecurity or data integrity early in 

development. End-to-end verification and validation testing is traditionally conducted, after the components 

are integrated at scale, prior to a large software release. Subsequently, smaller scale regression testing is 

performed for incremental software upgrades. After the testing is complete, the system is technically ready 

for operations. However, the performance risks in a loosely coupled, modern software processing system 

are increased due to the scale and dynamic nature of the applications and their data sources. In many cases, 

data in these systems are provided by remote sensing measurement sources. Under these circumstances, it 

is very important to perform real-time system-level verification of the data integrity and validation of the 

derived data products to detect potentially significant changes in performance and erroneous information 

presented to the operator. This real-time verification and validation approach we discuss requires the 

recording of the data origin, the historical data quality, and all paths traversed by the data through the system 

to assure detection of performance issues. 

It is important to define the general meaning of verification and validation in this context: 
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Verification is the evaluation of whether or not a product, service, or system complies with a 

regulation, requirement, specification, or imposed condition (PMI, 2013). In other words, a verification 

method establishes authenticity.   

Validation is the assurance that a product, service, or system meets the needs of the customer and 

other identified stakeholders, to include suitability and confidence (PMI, 2013). In other words, a validation 

method establishes some circumstantial usability.  

Verification and Validation, as defined above, provide the following: 

Figure 4 provides a list of measurable subcomponents of verification and validation as defined 

above. We propose using blockchain methods to enable the real-time assessment of these metrics, which 

have been demonstrated on a real-time system (MIT Lincoln Laboratory, 2019). 

 

Figure 4: Proposed metrics for system verification and validation. 

The blockchain approach addresses verification by providing an organic method for storing data, 

processing provenance and demonstrating synchronization all while offering system resilience and adding 

minimal latency. Figure 5 shows how we leverage the directed acyclic nature of a typical data processing 

chain to overlay crypto security and implement a blockchain. This data structure is a straightforward match 

to traditional blockchain applications. Instrumenting the source layers (S) and application (A) layers with 

lightweight crypto security at each step, users (U) can verify the data being presented. This architecture 

provides methods for: configuration management (each software update has a unique security label), error 

forensics (each path through the processing has a unique ID), and prevents against some types of malicious 

attacks (each unique ID is registered in a ledger which is available to the user).  
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Figure 5: System verification using blockchain overlay. 

Our method for enabling data validation involves adding data feature analytics to the blockchain 

infrastructure that are coupled to the processing chain. Pre-compiled data feature statistics and artificial 

intelligence techniques can be incorporated to provide validation metrics (for example, calibrated 

performance distributions). These metrics would be calculated in real-time and compared to the pre-

compiled features for validation. Figure 6 illustrates this concept. 

 

Figure 6: System validation using machine learning approach.
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3. ENABLING BLOCKCHAIN TECHNOLOGY 

In this section, we describe the basics of blockchain technology, which aspects of it that are 

applicable to our problem, and a rationalization of our implementation framework. 

3.1 BLOCKCHAIN BACKGROUND 

Blockchain is best known for its use as the cryptographic engine behind decentralized cryptocurrency. 

Bitcoin, the widely-recognized pioneer in this field, uses a secure and immutable means of consensus on a 

public ledger amongst users on an open, global, peer-to-peer network. Through a sequence of 

cryptographically-secure keys, creation of a blockchain affords a secure transfer of information with the 

key properties of immutability and data integrity. Initially, the underlying consensus mechanism was 

designed for permissionless blockchain on trustless networks, thus leveraging proof-of-work (i.e., a 

mathematical challenge which requires high computational power) as a means of creating currency 

valuation and establishing legitimacy of participants, but this is merely a corollary method, not a 

requirement, of a blockchain. 

3.2 WHAT IS A BLOCKCHAIN? 

Blockchains are blocks of recorded transactions chained together in a ledger, which refers to a record 

of transactions. Transactions are transfers of data, for example, bitcoins from one person’s account to 

another person’s account. Blocks are records of transactions permitted on the larger chain, which consists 

of all the blocks in its history. 

Traditionally, such data transfer operations are carried out using databases, where data, along with 

actions to read or modify it, are stored and managed. Blockchains allow for similar operations but allow 

the system to have multiple writers to the same database without a preconceived notion of trust on the 

participants. Blockchains also provide an unchangeable past record of transactions that have already 

happened, along with cryptographic guarantees and transparency of the record to all users. The block 

contents that record and guarantee the transactions are depicted in Figure 7. 

 

 

Figure 7: Description of a blockchain block. 
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A final critical feature of a blockchain system is the fact that it is distributed and decentralized. This 

is achieved by maintaining it amongst a group of peers via consensus protocols. This means that blockchains 

have increased resilience and availability with more participants, whereas databases are typically subject to 

single points of failure.  

 

3.3 TYPES OF BLOCKCHAINS 

Figure 8 depicts two broad types of blockchains that can be used: 1) public networks where any user 

can validate, write, and reach transaction; 2) private networks where only invited members can validate, 

write, and reach transactions.  

 

 

Figure 8: Types of distributed ledgers. 

 

Public and permissionless blockchain protocols are designed on the assumption that any given user 

or contributor is potentially compromised. Tokenized incentives, such as proof of work, can be used to 

make the untrusted networks safe, but they also make them slow. Typically, public and permissionless 

networks can only handle a few transactions per second; Bitcoin and Ethereum, for example, process fewer 

than a dozen transactions per second. This makes public, permissionless blockchains infeasible for large-

scale applications with high transaction volumes.  

Our DoD data processing problem is focused on real-time transactions at a large scale, but we do not 

have a requirement to operate in a completely trustless environment. While blockchains are best known for 

the trustless cryptocurrency application, they can also be employed amongst parties with some trust to 

mitigate incentive overhead. Other innovations and modifications to the methods and circumstance of the 

original employment have been developed by commercial companies with the motivation of improved 

scalability, speed, and versatility. 
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3.4 BLOCKCHAIN PLATFORMS 

Initial successes in the creation and use of cryptocurrency have generated significant growth and 

interest in blockchains. This has led several companies and public foundations to develop blockchain 

platforms that are widely open sourced and available for use. These platforms allow for rapid prototyping, 

development, and deployment of new blockchain applications. Each blockchain platform has been designed 

with specific goals, which dictate its features. In assessing existing technology for suitability to our 

application, we considered a number of factors, which are depicted in Figure 9.   

 

Figure 9: Comparison of blockchain implementation performance factors. 

3.5 BLOCKCHAIN IMPLEMENTATION 

The system we built employs Hyperledger Fabric, a distributed permissioned private blockchain 

network (visit https://www.hyperledger.org/use/fabric). We selected Hyperledger because it is designed to 

meet Enterprise requirements for providing robust security and authentication features, it allows for an 

authenticated set of permissioned participants, specific management of consensus methods between them, 

and a modular architecture that allows for component implementation, such as high-speed channels to meet 

system transport-delay constraints and custom code to manage transaction rules. Furthermore, Hyperledger, 

used by the Linux Foundation in association with a number of corporations (e.g., IBM, Oracle), has a robust 

user base and demonstrated usability in a variety of applications. 

Specific features of a permissioned platform are designed to meet enterprise use-case requirements 

for real-time transactions between securely identified participants. These features include: 1) participants 

must be identified/identifiable; 2) networks are required to be permissioned; 3) high transaction throughput 

performance; 4) low latency of transaction confirmation; 5) authentication, privacy, and confidentiality of 

communication between clients and providers (e.g., operations and data centers) is consistently supported.  

https://www.hyperledger.org/use/fabric
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All members of a Hyperledger Fabric network are required to enroll through a trusted Membership 

Service Provider (MSP). The enrollment protocols provide capabilities that enable flexibility in consensus 

management. Whereas most coin-oriented ledger platforms employ Byzantine Fault Tolerant (BFT) 

methods to determine consensus, another distinct design feature of Fabric that differentiates it from other 

permissioned platforms is its support for alternative consensus protocols, such as Crash Fault Tolerance 

(CFT), that are both more computationally efficient and practical for many transactional use-cases.  

Hyperledger Fabric’s consensus protocol flexibility allows for parallel code execution, effectively 

increasing system-wide performance and eliminating vulnerabilities caused by non-determinism. Fabric 

does not require specialized domain-specific languages (DSL) for smart contract coding to preserve the 

reliability of the network; therefore, Fabric differs from DSL-constrained platforms by supporting smart 

contracts (chaincode) implemented in general-purpose programming languages such as Node.js, Python, 

Java, and Go. Furthermore, every execution of a smart contract in most DSL-based systems is public since 

the transaction and often the source code itself are usually visible by other participants. This public feature 

of DSL implementations often complicates or impedes exchange of private data and private (algorithmic) 

agreements between participants. Many use-cases require subgroups of participants to share information 

that is kept private from other participants. Fabric achieves such confidentiality by using its channel 

architecture to restrict the distribution of confidential information exclusively to authorized nodes. Figure 

10 highlights the Hyperledger components used in our framework. 

 

Figure 10: Hyperledger architecture. 

3.6 DESCRIPTION OF BLOCKCHAIN PROTOTYPE 

We leveraged Hyperledger Fabric Certificate Authority (CA) to provide features for registration of 

digital identities, and the issuance, renewal, and revocation of Enrollment Certificates (ECerts) to users, 

which, in our use case, would be operations and data centers. These are standard cryptographically validated 
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digital certificates, where all communication to the CA server is accomplished via secure Representational 

State Transfer (REST) application program interfaces (API) as specified in a JavaScript Object Notation 

(JSON) configuration file. The Fabric CA is a private Root CA capable of providing and managing its own 

certificates as well as using a third-party commercial CA (e.g., Symantec) to provide identification. The 

Fabric Membership Provider uses the enrollment CA ECerts to define members of functional organizations, 

roles, and access privileges. The connections and various means and methods that peer nodes may use to 

accept input from other users are heterogeneous and may vary greatly in local implementations. Once a 

participant is Enrolled into a defined Membership, the modes of communication are well-defined by Fabric 

standards.  

All blockchain network peer nodes hold copies of ledgers and chaincode. Fabric’s privacy-oriented 

design differs in that it allows private chaincode relationships between any two (or more) members and 

multiple ledgers into private data collections. Fabric Membership conveys permissions to transact with 

other members through their private data collections. A single enrolled Identity may be a member of several 

different Fabric organizations, and many different relationships and transactions may be defined in 

chaincode.     

To test this, we simulated real-world operation and data center identities (created by a Fabric CA for 

test purposes) which were enrolled by default as Members of an assigned organization. All simulated data 

from each of the ops floor Members were sent (by default) with no editing or redaction. Each operator 

creates its own ledger, viewable only by itself and possibly a central entity, which in turn, creates a ledger 

of ALL ops floor transmission from all operators, and it is the only Member with permission to access.  

Figure 11 illustrates the mapping from the data processing system components into blockchain components. 

 

Figure 11: Mapping a processing system to a directed-acyclic-graph. 
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4. SYSTEM VERIFICATION AND SYSTEM  

VALIDATION DEMONSTRATION 

We now describe an example of an operationally-representative software system in order to 

demonstrate our objectives of system verification and on system validation using the blockchain approach. 

Figure 12 depicts the three configurations of a simple missile trajectory assessment system. The first 

configuration, shown in the top panel, is the initial system. Missile position and velocity track data are 

ingested from several sources.  This data is filtered for anomalies using fixed, developer-defined thresholds.  

Then an application is used to propagate the track data to determine the time and location of ground impact 

with the earth. The resulting impact is then presented to the users  (MIT Lincoln Laboratory, 2019). 

 

 

Figure 12: Blockchain verification and validation demonstration architectures. 

This initial system has several shortfalls: 

1. The user does not have insight into the pedigree of the data and its processing. 

2. The user does not have access to the data that was filtered out 

3. The data filtering rules are fixed, based on previous validation testing and developer insight. 

The other two systems shown in Figure 12 attempt to address these shortfalls and are discussed next.  
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4.1 VERIFICATION DEMONSTRATION 

The overall goal of our verification system demonstration was to address shortfall #1 using open-

source blockchain code-based components on a non-interference basis. The main goal of this 

implementation was to establish provenance on a multifaceted chain. In addition we were able to show 

resilience in the presence of connectivity outages from either a data source or user, and verify data 

authenticity in the presence of unregistered data products. The middle panel of Figure 12 details the 

implementation of our verification system.  

The first aspect of verification we demonstrated was data provenance, which describes the chronology 

of the ownership, custody, or location of information throughout its history. This was accomplished by 

including a cryptographic tag in each message from each data source or application. This tag was recorded 

on the blockchain each time a new message was received. This blockchain ledger of transactions is available 

to each user. 

The second aspect of verification we demonstrated was resilience, which means the system can 

continue functioning with peer outages. Since each peer has access to the blockchain information, data 

verification can be accomplished through the consensus of the collective users. As long as the majority of 

users are available, the data can be verified. 

The final aspect of verification we demonstrated was authentication, which we accomplished by 

introducing an unregistered data stream into the processing pipeline and showing it failed the verification 

protocol since its crypto tag was not in the blockchain ledger. Non-valid codes would automatically trigger 

a warning. Since the crypto tags of the processing system are mapped to a directed-acyclic-graph (discussed 

in previous section), the users could then determine the point in the processing from which the warning 

originated. 

This verification system demonstration successfully integrated a blockchain with a realistic data 

processing system. The blockchain component was very lightweight with minimal additional overhead on 

the message content in the system. We focused on mapping the blockchain to this use case and evaluating 

the system with provenance, resilience, and authentication metrics (as defined previously in Figure 4).  

4.2 VALIDATION DEMONSTRATION 

We now address shortfalls #2 and #3 through the additional step of data validation. This system is 

shown in the bottom panel of Figure 12. Two different approaches were introduced – static thresholding 

and statistical thresholding. Both approaches employ the concept of data flagging rather than data filtering, 

as was done in the initial system. The initial system used developer-specified thresholds to filter out data 

that exceeded the thresholds. In our system, we developed a flagging mechanism, albeit on static or dynamic 

thresholds, where the flags are stored, along with the verification data, on the blockchain. To consider the 

merits of static configuration file filters vs. blockchain flagging, we introduce the following definitions:  

Filtering: suppression or removal of data from the processing pipeline 

Flagging: automatically adding metadata that is carried through the processing pipeline 

The initial flagging thresholds can be statically set by the developer or statistically determined by 

machine learning techniques run on historical data. The users are given access to these thresholds, on the 
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blockchain, and can adjust in real-time if needed. In addition, machine learning can take place during real-

time operations and the statistical thresholds can be continuously updated. Figure 13 compares the benefits 

and regrets between the input filtering and blockchain flagging methods.  

 

Figure 13: Comparison between filtering and flagging data. 

We implemented the flags in our demonstrated blockchain based on static flag settings and statistical 

methods. The advantages and disadvantages of each method are listed in Figure 14. 

Thresholding Method Advantages Disadvantages 

Static  Developer or user defined 

 Simple to implement 

 Minimal latency 

 User adjustable 

 Subject matter or user 

expertise needed to adjust 

Statistical  Data defined 

 Little expertise needed 

 Dynamically updated  

 Significant amount of training 

data needed  

 Computationally expensive 

 

Figure 14: Types of thresholding used for data flagging. 

The thresholds generated for each method are stored on the blockchain and used for flagging data. 

However since these thresholds have to be determined a priori, the work done to create them is done  

off-chain and can be computationally expensive, particularly in the case of dynamically updating the 

statistical thresholds. 
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4.3 DATA ANALYTICS: OFF-CHAIN ANALYSIS FOR ON-CHAIN IMPLEMENTATION 

In this section, we will describe the various methods of off-chain outlier detection that we 

implemented on the blockchain for our data products. We chose outlier detection because it can be 

performed using basic mathematic statistical techniques and it inherently provides some organic insight 

into system performance. In addition, almost no subject matter expertise is needed to develop the outlier 

thresholds; the thresholds are set based on the historical data. The probabilistic results also lend themselves 

to dynamic, tunable, and combinable flags that can be standardized across the chain. 

To understand the utility trades of different off-chain processing methods, we chose three independent 

statistical techniques to exercise on the same training and test data.  

• Method A: Single variable distribution estimation 

• Method B: Multi-variable joint distribution estimation 

• Method C: Clustering using non-parametric estimators (Xiaowei, 2017) 

The first two methods involve selecting and conditioning feature data from compiled historic data, building 

distributions for each transaction, and storing the resulting distributin parameters on the blockchain. The 

third method employs Empirical Data Analytics (EDA), and provides a more optimal anomaly detection 

solution. However, this method in its current form does not readily map to a blockchain implementation.   

The purpose of these techniques is to determine whether a data point is in-family or an outlier. This 

information is depicted using features (via distributions) as a representation of all possible transactions 

across the system, each described by a particular input and output source pair (i.e., a node on the directed-

acyclic-graph). Since we are focusing on the feasibility of translating off-chain analytic distributions to on-

chain processing, we chose basic features such as missile altitude, impact time, position and velocity rates 

as well as other features relevant to the simple trajectory assessment system we used for demonstration. 

After the baseline ‘nominal’ statistical distributions were calculated off-chain, the distributions were 

implemented on the blockchain. Figure 15 shows how the parameters of a multi-variate Gaussian 

distribution were stored on the blockchain and Figure 16 shows how the test for an outlier was performed 

using a standard mahalanobis distance.  
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Figure 15: Embedding statistical distribution parameters on the blockchain. 

 

Figure 16: Outlier detection on the blockchain. 

After testing the three outlier detection techniques on the historical data, we identified 10 factors to 

consider in evaluating the implementation of each. We summarized the benefits and regrets of the 

techniques in Figure 17. 

 



18 

 

Figure 17: Comparison of methods for statistical parameter estimation. 

In summary, methods A and B, single versus multi-variate parameter estimation, are both feasible 

approaches that lend themselves to a blockchain implementation. Method C performed well, but does not 

match up well with this type of tunable implementation. 
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5. POTENTIAL FUTURE WORK 

Given the results of our work to date, our next objective will be to prove the ease of implementing 

free, open-source blockchain codebase components on a non-interference basis to an existing real-time data 

processing pipeline. The amount of modifications needed to the processing and messaging will be assessed 

as well as the potential benefits to the users. It is envisioned that this proof-of-concept will be in concert 

with the exploration, and potential development, of applying ‘Verification and Validation’ to existing 

operational systems. 

As a part of this activity, we see follow-on demonstrations that would continue on the path of less-

to-more autonomy, from fusion applications,to gain confidence in the verification and validation process, 

to artificial intelligence and machine learning applications. In all cases, the goals of these implementations 

would be to show establishment of provenance on a multifaceted chain, resilience in the instance of 

participant connectivity outages, and data verification in the presence of unregistered data products. 



 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 



21 

6. SUMMARY 

In this paper, we have discussed the challenges that arise with increased data sharing and 

interoperability in maintaining a level of trust in DOD systems. But have also discussed an approach to 

more efficiently and effectively leverage an open-source enterprise blockchain framework. We have also 

demonstrated that we can collect, verify, and validate data processing chains by tracking provenance and 

using smart contracts to add dynamically calculated metadata to an immutable and distributed ledger.  

We also claim that this non-invasive approach to verification and validation in data sharing 

environments has the power to improve decision contextualization at larger scale than manual approaches, 

such as consulting individual developers or mandating large amounts of additional metadata in schema. But 

to achieve full functionality, this will require us to define an operational decision support structure that can 

handle the informational content and complexity of this infrastructure on behalf of the user.  

In the introduction of this paper, we described levels of processing (see Figure 1) to refer to the types 

of information that are supplied and leveraged by decision makers and operational contextualized data 

processes. Operational decision support structures can be thought of as a hierarchy — a series of building 

blocks where higher-level compute processing increases with converting data to features and with 

converting features to decisions. However important decision support services that address cross-mission 

domains are still lacking. 

Figure 18 builds upon the levels of processing previously discussed and makes use of our 

hypothesized operational decision support hierarchical structure to provide a mission-agnostic support to 

achieving the ultimate goal of informing high-level decisions.  

 

 

Figure 18: Structure of a DoD multi-mission decision support system. 



22 

In summary, one could think of Blockchain-based Data Analytics in a broader context. Applying it 

to the basics of data provenance and validation, to multiple independent sources corroborating data-based 

inferences, to anomaly detection with confidence-based metrics alerting users of differences in the expected 

behavior, to machine learning identifying change detection and pattern of life. In all these cases, the key is 

enabling the assignment of significance to deviations in expected behavior, thus providing a level of 

confidence to the data user.   
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